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Question 1 [20 pts] A spring-mass system vibrates in a medium with

damping constant zero; the spring has a constant of k = 27 N / m and mass
m =9 kg.

/\r :)10 a) Write the homogeneous second-order differential equation that this spring-
2 ass system satisfies.

\wj) b) Write an expression y(t) for the position of the mass at time ¢ if, at time
¢t = 0, the mass is pulled down 1 m and then pushed upward at 3 m/s. (Use

the convention that “down” is oriented positively and pay close attention to
our signs.) ]

j('pﬁ c) Express the above function as a single function in the form
Y(t) = R cos(wopt — §)
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Question 2 [25 pts] Let L[y] indicate the third order linear differential
operator

¥ (t) +3y"(8) — ' (t) — 3y(t)
(i.e., the operator that takes a function y and returns its third derivative w/r
to time plus three times its second derivative w/r to time plus ...

.//‘( (a) Find the general solution to the homogeneous equation
Lly| =0
\/5 (b) Find the general solution of the differential equation
Ly =e™* (1)

(c) Circle the bullet point of each choice that represents a possible end be-
havior as t — oo for solutions of Equation 1:
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NOTE. Partial credit is possible for part (c) if work or justification is shown.
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Question 3 [20 pts] Let

and consider the matrix equation

u’ = Au (2)

~ . (a) Find the eigenvalues of A and their corresponding eigenvectors.

M’(b) Calculate the general solution of Equation 2.
(c) Draw a reasonably accurate phase portrait (phase plane) of the solution of

\td/“ Equation 2; show the straight-line solutions and a few representative curves,
and draw arrows oriented towards increasing time.
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Question 4 [20 pts] The matrix

(23

has complex (i.e., with imaginary part non-zero) eigenvalues. Find the gen-
eral solution to
u’ = Au

in terms of real-valued functions and constants. Also describe whether its
phase portrait is a spiral sink, source, or center, and what direction its spiral
turns in with passing time.
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Question 5 [15 pts] The matrix

(%)

has only one eigenvector up to scalar multiples. Find the general solution to

u = Au
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