

Problems esergel52, esergel53, and esergel54 are intended to be used together.

1. (a) Use geometry to justify the formula $\int_0^b x \, dx = \frac{b^2}{2}$ when $b > 0$.
- (b) Justify this formula when $b < 0$. Remember that $\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx$.
- (c) What is the area under the curve $f(x) = x$ between $x = a$ and $x = b$ when $0 < a < b$?
- (d) Check that this same formula also works when $a < 0 < b$. Draw a picture to illustrate your ideas.
- (e) Use geometry to evaluate the integrals $\int_{-1}^3 7x \, dx$ and $\int_{-2}^5 (3x + 6) \, dx$. Draw pictures of the two areas being computed. Check your answers against the formula from part (d). Use the properties of integrals discussed in class, and remember that $\int_a^b K \, dx = K(b - a)$.