

Consider the equation

$$ax^2 + bxy + cy^2 = 1$$

for three parameters a , b , and c .

1. This is the equation corresponding to graphs of conic sections. What kind of a shape is drawn if:
 - (a) $b^2 - 4ac < 0$?
 - (b) $b^2 - 4ac = 0$?
 - (c) $b^2 - 4ac > 0$?

You can use a calculator here to draw graphs and identify the curves from that.

2. Find $\frac{dy}{dx}$ for the first equation in this problem. Your answer will depend on the parameters a , b , and c . (You should solve for $\frac{dy}{dx}$ here. It'll make your life a lot easier.)
3. Set $\frac{dy}{dx} = 0$ and see what this means in terms of the values of x and y . Plug this into the initial equation to see what that means in terms of where horizontal tangent lines exist.
4. Is it possible to choose values for a , b , and c so that the graph both is a hyperbola *and* there is a point where the graph has a horizontal tangent line? If so, come up with values for a , b , and c that do this, as well as the point (x, y) that has the horizontal tangent line. If not, explain why not.
5. Is it possible to choose values for a , b , and c so that the graph both is a hyperbola *and* there are no points where the graph has a horizontal tangent line? If so, come up with values for a , b , and c that do this. If not, explain why not.
6. Is it possible to choose values for a , b , and c so that the graph both is an ellipse *and* there is a point where the graph has a horizontal tangent line? If so, come up with values for a , b , and c that do this, as well as the point (x, y) that has the horizontal tangent line. If not, explain why not.
7. Is it possible to choose values for a , b , and c so that the graph both is an ellipse *and* there are no points where the graph has a horizontal tangent line? If so, come up with values for a , b , and c that do this. If not, explain why not.