

A continuous function f is defined on the interval $[-2, 2]$. The values of f at some of the points of the interval are given by the following table:

x	-2	-1	0	1	2
$f(x)$	2	-1	2	-1	2

1. Using only this information, what can be concluded about the roots of f , that is, the solutions of $f(x) = 0$, in the interval $[-2, 2]$? The answer should be something like: f has at least 8 roots in $[-2, 2]$, or f has at most 6 roots in $[-2, 2]$.

Hint: Use the Intermediate Value Theorem on each of the intervals $[-2, -1]$, $[-1, 0]$, $[0, 1]$, and $[1, 2]$.

2. If $f(x) = x^4 - 4x^2 + 2$, verify that the relevant values of f are given by the table above.

- (a) Sketch the graph of $y = f(x)$ in the viewing window $[-2.5, 2.5] \times [-3, 3]$.
- (b) How many roots does f have in the interval $[-2, 2]$? Find the roots algebraically. **Suggestion:** Let $t = x^2$ and solve with the quadratic formula. Then find x .

3. If $f(x) = x^4 - 4x^2 + 2 + 5(2x-1)x(x^2-1)(x^2-4)$. Verify that the relevant values of f are given by the table above.

- (a) Sketch the graph of $y = f(x)$ in the viewing window $[-2.5, 2.5] \times [-80, 80]$.
- (b) Explain why f has at least one root in each of the intervals $(-2, 1)$, $(-1, 0)$, $(0, 1)$, and $(1, 2)$.
- (c) Sketch the graph of $y = f(x)$ in the viewing window $[0, 1] \times [-1, 3]$.
- (d) How many roots does f have in the interval $[0, 1]$? Approximate the roots of f in $[0, 1]$ to three decimal places using a calculator.

4. Having done b) and c), was your original conclusion in part a) correct?