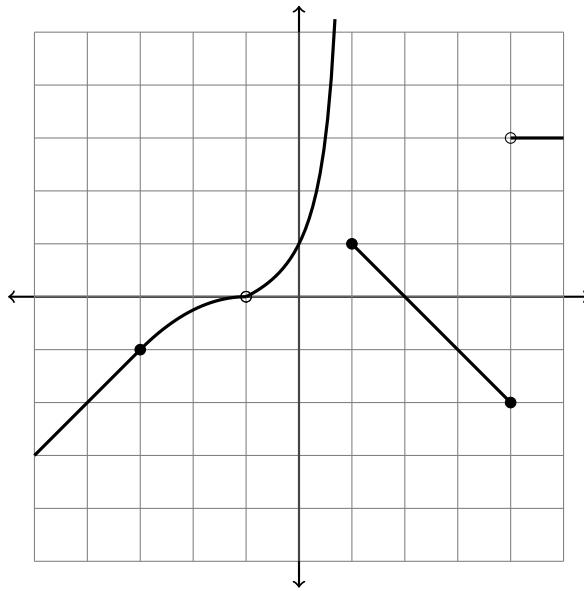


Consider the following piecewise function:

$$f(x) = \begin{cases} 2 + x & x \leq -3 \\ -\frac{1}{4}(x+1)^2 & -3 < x < -1 \\ \frac{2}{1-x} - 1 & -1 < x < 1 \\ 2 - x & 1 \leq x < 4 \\ -2 & x = 4 \\ 3 & x > 4 \end{cases}$$

whose graph is shown here:



1. There is a table on the last page of the workshop. Fill out all of the information requested in it. You will be asked about one-sided limits, full limits, and continuity of this function f . Do whatever scratch work you need, but you only need to write the answers in the table.
2. Come up with a new function $g(x)$, defined piecewise, with the following properties:
 - g has a jump discontinuity at $x = -2$,
 - g has a removable discontinuity at $x = 1$,
 - g has an infinite discontinuity at $x = 3$, and
 - g is continuous everywhere else.

	$c = -3$	$c = -1$	$c = 1$	$c = 4$
$\lim_{x \rightarrow c^+} f(x)$				
$\lim_{x \rightarrow c^-} f(x)$				
$\lim_{x \rightarrow c} f(x)$				
$f(c)$				
Is f continuous at c ?				