

The logic of ϵ - δ proofs.

1. Consider the fact

$$\lim_{x \rightarrow 4} 2x + 1 = 9$$

- (a) Write out the definition of this statement using the ϵ - δ definition of the limit.
- (b) Take the expression $|2x + 1 - 9|$ and simplify it so it has a factor of $|x - 4|$ in it.
- (c) If I want to have $|2x + 1 - 9| = 0.01$, what value do I need to pick for $|x - 4|$? Notice that if I want $|2x + 1 - 9| < 0.01$, I can do this by taking $|x - 4|$ less than this value.
- (d) If I want to have $|2x + 1 - 9| = 0.001$, what value do I need to pick for $|x - 4|$? Notice that if I want $|2x + 1 - 9| < 0.001$, I can do this by taking $|x - 4|$ less than this value.
- (e) If I want to have $|2x + 1 - 9| = \epsilon$, what value do I need to pick for $|x - 4|$? Notice that if I want $|2x + 1 - 9| < \epsilon$, I can do this by taking $|x - 4|$ less than this value.
- (f) Now, set δ to be the value you calculated in the last step. Do the calculations from the previous step in reverse to show that if $|x - 4| < \delta$, then $|2x + 1 - 9| < \epsilon$. Idea: If $|x - 4| < \delta$, then we can plug that into the rewritten version of $|2x + 1 - 9|$ to get the bound that we want.

2. Now, consider the following limit.

$$\lim_{x \rightarrow 3} \frac{1}{x} = \frac{1}{3}$$

- (a) Write out the ϵ - δ definition of this limit.
- (b) Take the expression $\left| \frac{1}{x} - \frac{1}{3} \right|$ and rewrite it so that it has a factor of $|x - 3|$.
- (c) This problem is more complicated than the previous one because the extra factor attached to the $|x - 3|$ is not a constant, but depends on x . But we can handle this. We know that we want x to be close to 3 in this limit. If $|x - 3| \leq 1$, then what are the largest and smallest possible values of x ?
- (d) With those largest and smallest values of x , what are the largest and smallest values of this extra factor?
- (e) What these last two steps have shown is that if $|x - 3| < 1$, then this extra factor has an upper bound. So, as long as we make sure $\delta < 1$, that upper bound works whenever $|x - 3| < \delta$. Assume that we have this, and replace the extra factor by that upper bound to get an expression of the form

$$\left| \frac{1}{x} - \frac{1}{3} \right| < C|x - 3|$$

where C is the bound you found in the previous part.

- (f) This problem now looks a lot like the first example. Use the same techniques to figure out what we would need to make δ in terms of ϵ to make this definition work again.
- (g) Before we go through the problem with defining δ and moving forward, we need to take into account the fact that we needed $\delta < 1$ for the non-constant factor to be bounded. Thus, we need both $\delta < 1$ and $\delta <$ some bound from the previous part. Write an expression using \min in order to accomplish both of these.
- (h) Now we can pick δ to be less than this value. Work though the calculations in the reverse order to get that

$$\left| \frac{1}{x} - \frac{1}{3} \right| < \epsilon.$$

Make sure you see where each of the two assumptions on δ come into play to give this result.