

Consider the functions $f(x) = |x| \sin\left(\frac{\pi}{x}\right)$ and $g(x) = \sin\left(\frac{1}{x}\right)$. This is a strange function. Let's investigate how it behaves near 0.

1. What are $f\left(\frac{1}{10}\right)$, $f\left(\frac{-1}{100}\right)$, $f\left(\frac{1}{500}\right)$, and $f\left(\frac{-1}{634,298}\right)$? In general, for any nonzero integer n , what is $f\left(\frac{1}{n}\right)$? Does this numerical evidence prove that $\lim_{x \rightarrow 0} f(x) = 0$? Why or why not? What if you were to do the same for the function $g(x)$?
2. Using a calculator, graph the curve $y = f(x)$. Adjust the viewing window so that x goes from -5 to 5 and y goes from -3 to 3. Zoom in several times, observing the behavior of f near 0 each time. Describe what you see. Does this graphical evidence prove that $\lim_{x \rightarrow 0} f(x) = 0$? Why or why not?
3. Recall the precise mathematical definition of the statement " $\lim_{x \rightarrow 0} f(x) = 0$ ". We say that $\lim_{x \rightarrow 0} f(x) = 0$ if for any arbitrarily small positive number ϵ , *no matter how small* (think: $\epsilon < .01$), it is possible to find some positive number δ , perhaps even smaller than ϵ , such that whenever x is within δ of 0, $f(x)$ is within ϵ of 0. Using this formal definition, is it true that $\lim_{x \rightarrow 0} f(x) = 0$? Justify your answer.