MATH 251: Quiz 8

April 30, 2015

Name: \qquad Sec: \qquad

1. Use Green's Theorem to calculate the integral $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{s}$ for the vector field

$$
\vec{F}=\left\langle 2 x y+x^{4}, 3 x y^{2}-\sin (y)\right\rangle
$$

and the curve

2. Use Stokes' Theorem to evaluate the integral

$$
\iint_{\mathcal{S}} \operatorname{curl}(\vec{F}) \cdot d \vec{S}
$$

for the surface \mathcal{S} with outward normal vector and vector field \vec{F} below, where the boundary of \mathcal{S} is the ellipse $4 x^{2}+y^{2}=16$ in the $x y$-plane. This boundary can be parametrized as $c(t)=$ $\langle 2 \cos (t), 4 \sin (t), 0\rangle$.

$$
\vec{F}=\left\langle 3 x+4 z x^{2}, x+y+z, x^{2}+y^{2}+z^{2}\right\rangle
$$

