MATH 251: Quiz 7

April 23, 2015

Name: \qquad Sec: \qquad

1. Let $\mathcal{S}=G(u, v)=\left(u^{2}+v^{2},-v, u\right)$ be a parametrically defined surface, where u and v satisfy $u^{2}+v^{2} \leq 4$.
(a) Compute $\vec{T}_{u}(u, v), \vec{T}_{v}(u, v)$, and $\vec{n}(u, v)$ for this surface (as functions of u and v).
(b) Find the equation for the tangent plane to \mathcal{S} at the point $(2,0,1)=G(1,1)$.
(c) Compute the surface area of \mathcal{S}.
2. Let $\vec{F}=\left\langle x+3 y^{2}, y+4 x, z\right\rangle$ be a vector field, and let \mathcal{S} be the plane defined by the equation $z=6-2 x-y$ for $1 \leq x \leq 3$ and $1 \leq y \leq 3$. Compute the flux of \vec{F} through \mathcal{S}, where \mathcal{S} is defined with the upward (positive z-direction) normal, i.e., find

$$
\int_{\mathcal{S}} \vec{F} \cdot d \vec{S} .
$$

