MATH 251: Quiz 3

February 26, 2015

Name: ______ Sec: _____

Note: Questions 2 and 3 are on the back.

1. Find an equation for the tangent plane to the graph of

$$z = f(x, y) = y^3 + 2ye^x$$

at the point (0,3). [Hint: This plane must contain the vectors $\langle 1, 0, f_x \rangle$ and $\langle 0, 1, f_y \rangle$. Or you can use any other method to find this plane.]

2. Compute the gradient of the function

$$g(x, y, z) = 2z^2 e^{xy} + x^2 y^2.$$

3. Given the function

$$h(x,y) = x^3y^2 + 2xy$$

and the parametrizations

$$x(s,t) = 3s + 2t$$
 $y(s,t) = 4s - t$

use the Chain Rule to compute the derivatives $\frac{\partial h}{\partial s}$ and $\frac{\partial h}{\partial t}$ evaluated at the point $(s,t) = (\frac{3}{11}, \frac{1}{11})$ [that is, (x,y) = (1,1)].