MATH 251: Quiz 3

February 26, 2015

Name: \qquad Sec: \qquad
Note: Questions 2 and 3 are on the back.

1. Find an equation for the tangent plane to the graph of

$$
z=f(x, y)=y^{3}+2 y e^{x}
$$

at the point $(0,3)$. [Hint: This plane must contain the vectors $\left\langle 1,0, f_{x}\right\rangle$ and $\left\langle 0,1, f_{y}\right\rangle$. Or you can use any other method to find this plane.]
2. Compute the gradient of the function

$$
g(x, y, z)=2 z^{2} e^{x y}+x^{2} y^{2} .
$$

3. Given the function

$$
h(x, y)=x^{3} y^{2}+2 x y
$$

and the parametrizations

$$
x(s, t)=3 s+2 t \quad y(s, t)=4 s-t
$$

use the Chain Rule to compute the derivatives $\frac{\partial h}{\partial s}$ and $\frac{\partial h}{\partial t}$ evaluated at the point $(s, t)=\left(\frac{3}{11}, \frac{1}{11}\right)$ $[$ that is, $(x, y)=(1,1)]$.

