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In this document, we describe a function that does not satisfy the hypotheses of Clairaut’s theorem, and
therefore, the mixed second partial derivatives are not equal.
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with f(0,0) = 0. We compute the first partial derivatives
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where we needed to look at the actual function f and take limits to get the value of these derivatives at
(0,0). To compute the second derivatives at (0,0) we follow this same approach.
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since, plugging = = 0 into the equation for f, gives
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Thus, we have that f;, # fy. at the point (0,0). This is because neither of these derivatives are continuous
in a disk containing (0, 0).



