Clairaut's Theorem
 Matt Charnley

February 20, 2015

In this document, we describe a function that does not satisfy the hypotheses of Clairaut's theorem, and therefore, the mixed second partial derivatives are not equal.

Let

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}
$$

with $f(0,0)=0$. We compute the first partial derivatives

$$
f_{x}(x, y)= \begin{cases}\frac{y\left(x^{2}-y^{2}\right)+2 x^{2} y}{\left(x^{2}+y^{2}\right)}-\frac{2 x^{2} y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

and

$$
f_{y}(x, y)= \begin{cases}\frac{x\left(x^{2}-y^{2}\right)+2 x y^{2}}{\left(x^{2}+y^{2}\right)}-\frac{2 x y^{2}\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

where we needed to look at the actual function f and take limits to get the value of these derivatives at $(0,0)$. To compute the second derivatives at $(0,0)$ we follow this same approach.

$$
f_{x y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{(-h+0)-0}{h}=-1
$$

since, plugging $x=0$ into the equation for f_{x} gives

$$
f_{x}(0, y)=\frac{y\left(0-y^{2}\right)+0}{0+y^{2}}-0=-y .
$$

Doing the same thing for $f_{y x}$ we see that

$$
f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{(h+0)-0}{h}=1 .
$$

Thus, we have that $f_{x y} \neq f_{y x}$ at the point $(0,0)$. This is because neither of these derivatives are continuous in a disk containing $(0,0)$.

