MATH 251: Quiz 4 June 25, 2015

Name: _____

1. Integrate f(x, y, z) = 2x + 3yz over the rectangular prism $0 \le x \le 2, 1 \le y \le 5, 0 \le z \le 1$.

2. Integrate f(x, y) = 2xy over the region between the graphs of y = 2x and $y = x^2$.

3. Integrate f(x, y) = x + 2y over the triangle pictured below.

4. Integrate f(x, y, z) = x over the region in the first octant $[x \ge 0, y \ge 0, z \ge 0]$ bounded from above by the plane x + 2y + z = 6.

5. Convert (x, y, z) = (0, 3, 4) to both cylindrical and spherical coordinates.

6. Convert the following equations to spherical coordinates.

(a)
$$z^2 = x^2 + y^2$$
.

(b)
$$z = x^2 + y^2$$
.

(c) $x^2 + y^2 + z^2 = 4$.

Conversion Formulas

Cylindrical		Spherical	
$x = r\cos(\theta)$	$r = \sqrt{x^2 + y^2}$	$x = \rho \cos(\theta) \sin(\phi)$	$\rho = \sqrt{x^2 + y^2 + z^2}$
$y = r\sin(\theta)$	$\tan(\theta) = \frac{y}{x}$	$y = \rho \sin(\theta) \sin(\phi)$	$\tan(\theta) = \frac{y}{x}$
z = z	z = z	$z = \rho \cos(\phi)$	$\cos(\phi) = \frac{z}{\rho}$