MATH 251: Quiz 4

June 25, 2015

Name: \qquad

1. Integrate $f(x, y, z)=2 x+3 y z$ over the rectangular prism $0 \leq x \leq 2,1 \leq y \leq 5,0 \leq z \leq 1$.
2. Integrate $f(x, y)=2 x y$ over the region between the graphs of $y=2 x$ and $y=x^{2}$.
3. Integrate $f(x, y)=x+2 y$ over the triangle pictured below.

4. Integrate $f(x, y, z)=x$ over the region in the first octant $[x \geq 0, y \geq 0, z \geq 0]$ bounded from above by the plane $x+2 y+z=6$.
5. Convert $(x, y, z)=(0,3,4)$ to both cylindrical and spherical coordinates.
6. Convert the following equations to spherical coordinates.
(a) $z^{2}=x^{2}+y^{2}$.
(b) $z=x^{2}+y^{2}$.
(c) $x^{2}+y^{2}+z^{2}=4$.

Conversion Formulas

Cylindrical	Spherical		
$x=r \cos (\theta)$	$r=\sqrt{x^{2}+y^{2}}$	$x=\rho \cos (\theta) \sin (\phi)$	$\rho=\sqrt{x^{2}+y^{2}+z^{2}}$
$y=r \sin (\theta)$	$\tan (\theta)=\frac{y}{x}$	$y=\rho \sin (\theta) \sin (\phi)$	$\tan (\theta)=\frac{y}{x}$
$z=z$	$z=z$	$z=\rho \cos (\phi)$	$\cos (\phi)=\frac{z}{\rho}$

