MATH 251: Quiz 3

June 18, 2015

Name:

1. Find the direction of steepest ascent for the function $f(x, y)=x^{3}+2 x y+y^{2}$ at the point $(-1,1)$.
2. If $T(x, y, z)=x^{2}+3 y-2 z^{2}$ and $\vec{c}(t)=\langle\sin (t), t, \cos (t)\rangle$, compute

$$
\frac{d}{d t} T(\vec{c}(t)) \quad \text { at } t=\frac{\pi}{4} .
$$

3. Find $\frac{\partial f}{\partial t}$ at $s=1, t=1$, for $f(x, y, z)=2 x^{3}+3 y^{2}+5 z$ if

$$
x=s^{2}+t^{2} \quad y=s+t \quad z=s^{2}-t^{2}
$$

4. If z is given implicitly as a function of x and y by

$$
x^{2}+2 y^{2}-4 z^{2}+3 x-2 y+z=8
$$

find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
5. Find and characterize the critical points of the function

$$
f(x, y)=y^{3}-3 x y-x^{2}+2 x
$$

6. Find the maximum value of $3 x+4 y-z$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

Possibly Helpful Formulas:

Gradient of a Function $f(x, y, z)$:

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \frac{\partial f}{\partial z}\right\rangle
$$

Chain Rule for Paths: If we have $F(x, y, z)$ and a curve $\vec{c}(t)$, then

$$
\frac{d}{d t} F(\vec{c}(t))=\nabla F(\vec{c}(t)) \cdot \overrightarrow{c^{\prime}}(t)
$$

Directional Derivative of the function f in the direction of \vec{v} :

$$
D_{\vec{v}} f=\frac{1}{\|\vec{v}\|} \nabla f \cdot \vec{v}
$$

General Chain Rule: If we have $f(x, y, z)$ with $x=x(s, t), y=y(s, t)$ and $z=z(s, t)$, then

$$
\frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
$$

Implicit Differentiation: If $F(x, y, z)=0$ and we want to write z as a function of x and y, we have that

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
$$

Second Derivative Test: If (a, b) is a critical point of f, then for

$$
D=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

- If $D>0$ and $f_{x x}(a, b)>0$, then (a, b) is a minimum.
- If $D>0$ and $f_{x x}(a, b)<0$, then (a, b) is a maximum.
- If $D<0$, then (a, b) is a saddle point.
- If $D=0$, the test is inconclusive.

