MATH 251: Quiz 2

June 4, 2015

Name: \qquad

1. Find the equation of the plane through the point $(0,2,1)$ with normal vector $\langle 2,3,2\rangle$.
2. Find the equation of the plane through the points $(1,2,3),(2,-1,2)$ and $(-1,-1,-1)$.
3. For the vector-valued function $\vec{r}(t)=\left\langle 2 e^{t}, t^{3}, \frac{1}{t}\right\rangle$, compute
(a) $\overrightarrow{r^{\prime}}(t)$
(b) $\int_{1}^{3} \vec{r}(t) d t$
4. Find the tangent vector to the curve $\vec{r}(t)=\left\langle t^{4}, e^{t}+2,2 t^{2}+3 t+1\right\rangle$ at the point $t=2$.
5. For the curve $\vec{r}(t)=\langle\cos (4 t), 3 t, \sin (4 t)\rangle$, compute
(a) the length of $\vec{r}(t)$ between $t=0$ and $t=3$.
(b) the curvature of $\vec{r}(t)$ at $t=1$.

Possibly Helpful Formulas:

$$
\vec{v} \times \vec{w}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

Equations for a Plane:

$$
\begin{gathered}
\vec{n} \cdot\langle x, y, z\rangle=d \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \\
a x+b y+c z=d
\end{gathered}
$$

for $\vec{n}=\langle a, b, c\rangle$ and $d=a x_{0}+b y_{0}+c z_{0}$.

Arc Length (length of a curve) from a to t :

$$
s(t)=\int_{a}^{t}\left\|\overrightarrow{r^{\prime}}(u)\right\| d u
$$

Curvature formulas

$$
\begin{gathered}
\kappa(t)=\left\|\frac{d \vec{T}}{d s}\right\| \\
\kappa(t)=\frac{\left\|\overrightarrow{r^{\prime}}(t) \times \overrightarrow{r^{\prime \prime}}(t)\right\|}{\left\|\overrightarrow{r^{\prime}}(t)\right\|^{3}}
\end{gathered}
$$

