MATH 251: Quiz 1 May 28, 2015

Name: _____

1. Let $\vec{v} = \langle 2, -1, 2 \rangle$ and $\vec{w} = \langle -1, 3, 2 \rangle$. Compute

- (a) $3\vec{v} + 2\vec{w}$.
- (b) $\vec{v} \cdot \vec{w}$.
- (c) $\vec{v} \times \vec{w}$.

2. Find the angle between the vectors $\langle 1, 1, -1 \rangle$ and $\langle 0, 1, 2 \rangle$ as an inverse cosine. Is this angle acute or obtuse?

3. Let $\vec{u} = \langle 2, 3, -2 \rangle$ and $\vec{v} = \langle 1, 1, 1 \rangle$. Decompose \vec{u} into $u_{//} + u_{\perp}$ with respect to \vec{v} .

4. Find a vector \vec{v} that is perpendicular to both $\langle 2, 1, 4 \rangle$ and $\langle -2, 6, 1 \rangle$.

Possibly Helpful Formulas:

If $v = \langle a_1, a_2, a_3 \rangle$ and $\vec{w} = \langle b_1, b_2, b_3 \rangle$, then

$$\vec{v} \cdot \vec{w} = a_1 b_1 + a_2 b_2 + = ||\vec{v}|| ||\vec{w}|| \cos(\theta)$$
$$\vec{v} \times \vec{w} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$
$$\vec{v}_{//} = \left(\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} \quad \text{and} \ \vec{v}_\perp = \vec{v} - \vec{v}_{//}$$

for decomposing \vec{v} into components parallel and perpendicular to \vec{w} .

How's my teaching so far? I know it's only been 3 days, but just to get some feedback

• Pace of material	Too slow	1	2	3	4	5	Too Fast
• Pace/Clarity of speaking	Too slow	1	2	3	4	5	Too Fast
• Legibility of handwriting	Bad	1	2	3	4	5	Good

• Any other comments?