MATH 251: Quiz 1

May 28, 2015

Name:

1. Let $\vec{v}=\langle 2,-1,2\rangle$ and $\vec{w}=\langle-1,3,2\rangle$. Compute
(a) $3 \vec{v}+2 \vec{w}$.
(b) $\vec{v} \cdot \vec{w}$.
(c) $\vec{v} \times \vec{w}$.
2. Find the angle between the vectors $\langle 1,1,-1\rangle$ and $\langle 0,1,2\rangle$ as an inverse cosine. Is this angle acute or obtuse?
3. Let $\vec{u}=\langle 2,3,-2\rangle$ and $\vec{v}=\langle 1,1,1\rangle$. Decompose \vec{u} into $u_{/ /}+u_{\perp}$ with respect to \vec{v}.
4. Find a vector \vec{v} that is perpendicular to both $\langle 2,1,4\rangle$ and $\langle-2,6,1\rangle$.

Possibly Helpful Formulas:

If $v=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{w}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then

$$
\begin{gathered}
\vec{v} \cdot \vec{w}=a_{1} b_{1}+a_{2} b_{2}+=\|\vec{v}\|\|\vec{w}\| \cos (\theta) \\
\vec{v} \times \vec{w}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle \\
\vec{v}_{/ /}=\left(\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right) \vec{w} \quad \text { and } \vec{v}_{\perp}=\vec{v}-\vec{v}_{/ /}
\end{gathered}
$$

for decomposing \vec{v} into components parallel and perpendicular to \vec{w}.

How's my teaching so far? I know it's only been 3 days, but just to get some feedback

- Pace of material	Too slow	1	2	3	4	5	Too Fast
- Pace/Clarity of speaking	Too slow	1	2	3	4	5	Too Fast
- Legibility of handwriting	Bad	1	2	3	4	5	Good

- Any other comments?

