Math 244: Bifurcation Diagrams February 16, 2021

Autonomous Equations with Parameter

- Autonomous Equation that models a physical system with something that we can change about it. Situation: Logistic Population Growth with harveshy. $\frac{dy}{dt} = y(K-y) - \alpha$ d = parameter - Variable harvesting rate. Q: How does changing & affect the equation as well as its "solutions?

Definition. An *automonous equation with parameter* is a differential equation of the form

$$\frac{dy}{dt} = f_{\alpha}(y), \qquad \qquad f(a', y')$$

where f_{α} is a function of one variable (y) that has some dependence on α .

Examples:

$$\frac{dy}{dt} = y(y - \alpha)$$
$$\frac{dy}{dt} = y^2(y^2 - \alpha)$$
$$\frac{dy}{dt} = y(20 - y) - \alpha$$

are all examples of autonomous equations with parameter.

Analyzing these equations

As these are autonomous equations, we can analyze them using phase lines. The idea is to do so for given values of α .

Example. Let $f_{\alpha}(y) = y(y - \alpha)$. Draw a phase line for

$$\frac{dy}{dt} = f_{\alpha}(y)$$

for $\alpha = -2$, $\alpha = 0$, and $\alpha = 3$.

#= y(y+z) よ y=0,y=-z

#= y(y-3)

69.

A better approach

A better way to try to analyze these types of equations is with a **bifurcation diagram**.

· Draw a graph in 2-dimensions - a = horizontal axis - y = vertical axis Above each d, put the phase line that
Above each d, put the phase line that
Corresponds to that value of d. = y(y-a) -2 X 4

Process for Drawing Bifurcation Diagrams

1) Find equilibrium Solutions - as a function of d , + possible 2) Look at faly) ~ f(a,y). Determine where in the plane it is positive or Negative. 3) Draw the graph of the equilibrium solutions Shode the regions where it is going up or John.

Example. Sketch a bifurcation diagram for the equation

 $\frac{dy}{dt} = y(20 - y) - \alpha \quad = \mathbf{O}$ $\frac{\partial \partial y - y^2}{\partial x^2 - \alpha} = 0$ $y^2 - \frac{\partial \partial y}{\partial x} + \alpha = 0$ $y = \frac{a_0 \pm 1900 - 4a}{2} = 101100 - a$ d < 100, two real solutions d > 100, no real solutions 100

Bifurcation Point - A value of d at which the qualitative behavior of the solutions change. -> # of equilibrium solutions -> Stability of these solutions.