MATH 251: Quiz 3

October 8, 2015

Name: \qquad Sec: \qquad

1. Let $\vec{r}(t)=\langle 4 t, \cos (3 t), \sin (3 t)\rangle$.
(a) Find the length of $\vec{r}(t)$ between $t=0$ and $t=2$.
(b) Compute the curvature of \vec{r} at $t=1$.

Curvature Formulas:

$$
\kappa(t)=\left\|\frac{d \vec{T}}{d s}\right\| \quad \kappa(t)=\frac{\left\|\overrightarrow{r^{\prime}}(t) \times \overrightarrow{r^{\prime \prime}}(t)\right\|}{\left\|\overrightarrow{r^{\prime}}(t)\right\|^{3}} \quad \kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}
$$

2. Compute $f_{x x}, f_{x y}$, and $f_{y y}$ for $f(x, y)=x^{3}+3 x^{2} y+4 y^{2} \sin (x)$.
3. Explain why

$$
g(x, y)=\frac{x^{2}+y e^{x^{2}}}{x^{2}+y^{2}+1}
$$

is continuous at $(x, y)=(1,2)$. [Hint: Use the form of this function, and that functions you know from Calculus I are continuous.] Use this to compute

$$
\lim _{(x, y) \rightarrow(1,2)} g(x, y) .
$$

