MATH 135: Quiz 8

October 28, 2014

Name: \qquad Sec: \qquad

1. Use differentials or linear approximations to approximate the value of $\sqrt{16.1}$.
2. The Kinetic Energy of an object [in Joules] is given by the formula

$$
K E(v)=\frac{1}{2} m v^{2}
$$

where v is the velocity of the ball [in m / s] and m is the mass [in kg]. Someone throws a 1 kg medicine ball at the wall and you measure the speed of it as $10 \mathrm{~m} / \mathrm{s}$. [The mass is exactly 1 kg , so there is no error in that measurement.] If your measurement of the speed is within $.5 \mathrm{~m} / \mathrm{s}$, what is the approximate propagated error $(\Delta K E)$ in your calculation of the Kinetic Energy of the ball?
3. Let

$$
f(x)=2 x^{3}-9 x^{2}=x^{2}(2 x-9) .
$$

(a) Find all "critical numbers" or "critical points" of f.
(b) Find the absolute maximum and minimum values of f on $[-1,5]$.
(c) What does the Mean Value Theorem say about some point c between -1 and 5 ?

