MATH 135: Quiz 3

September 23, 2014

Name: \qquad Sec: \qquad

1. Consider the piecewise-defined function f below.

$$
f(x)= \begin{cases}\frac{x+2}{x+1} & x<0 \\ x+1 & x \geq 0\end{cases}
$$

(a) Find all points of discontinuity of f.
(b) Use the definition of continuity to show whether f is continuous at $x=0$. (You should be taking some limits here.)
2. Show that $g(x)=x^{4}+3 x^{3}-10$ has a root $(g(x)=0)$ in $[-1,2]$.
3. The population of bacteria P in an ideal environment generally obeys the equation

$$
\begin{equation*}
P(t)=P_{0} 2^{k t} \tag{1}
\end{equation*}
$$

where P_{0} and k are constants and t is in hours. Assume that we have a population of E. coli that follows the equation (1). This population doubles every 30 minutes, and at $t=1$ hour $=60$ minutes the population was 2,000 .
(a) Find the constants P_{0} and k.
(b) At what time t will the population reach 5,000? Express your answer as a logarithm.

