
SELECTED TOPICS IN REAL AND COMPLEX ANALYSIS

Abstract. The purpose of this notes it to discuss selected topics in real and complex analysis and
emphasize some important ideas in these fields.

1. Topological preliminaries

This section is essentially based on [2]. The concepts of limit, convergence, and continuity are
central to all of analysis, and it is useful to have a general framework for studying them. One such
framework is that of metric spaces. However, metric spaces are not sufficiently general to describe
even some very classical modes of convergence, for example, pointwise convergence of functions on
R. A more flexible theory can be built by taking the open sets as the primitive data, and this will
be explored here.

1.1. Topological spaces. Let X be a nonempty set and I be a nonempty index set. A topology
on X is a family T = {Uα ⊆ X : α ∈ I} of subsets of X that contains ∅ and X, and is closed under
arbitrary unions and finite intersections. More precisely, we have:

1. ∅, X ∈ T ;
2. for every A ⊆ I and (Uα : α ∈ A) ⊆ T we have

⋃
α∈A Uα ∈ T ;

3. for any finite A ⊆ I and (Uα : α ∈ A) ⊆ T we have
⋂
α∈A Uα ∈ T .

Example 1.1. Let us examine a few examples.
1. If X is any nonempty set, P(X) and {∅, X} are topologies on X. They are called the discrete

topology and the trivial topology, respectively.
2. If X is an infinite set, {U ⊆ X : U = ∅ or U c is finite} is a topology on X, called the

cofinite topology.
3. Recall that a metric on a set X is a function ρ : X ×X → [0,∞) such that

3.1. ρ(x, y) = 0 iff x = y;
3.2. ρ(x, y) = ρ(y, x) for all x, y ∈ X;
3.3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Intuitively, ρ(x, y) is to be interpreted as the distance from x to y. A set equipped with a
metric is called a metric space. The open ball of radius r > 0 centered at x ∈ X is

B(x, r) = {y ∈ X : ρ(x, y) < r}.
If (X, ρ) is a metric space with a metric ρ, then the metric topology T is defined as the set
of all U ⊆ X such that U is the union of a family (empty or otherwise) of open balls in X.

4. If (X, T ) is a topological space and Y ⊆ X, then T (Y ) = {U ∩ Y : U ∈ T } is a topology on
Y , called the relative topology induced by T (Y ).

We now present the basic terminology concerning topological spaces. (X, T ) will always denote a
topological space. The members of T are called open sets, and their complements are called closed
sets. We observe that the family of closed sets is closed under arbitrary intersections and finite
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unions. The interior of A ⊆ X is the union of all open sets contained in A, and is denoted by
int(A). The closure of A ⊆ X is the intersection of all closed sets containing A, and is denoted by
cl(A). Obviously int(A) is the largest open set contained in A and cl(A) is the smallest closed set
containing A.

Exercise 1.2. Show that

[int(A)]c = cl(Ac), and [cl(A)]c = int(Ac).

The difference cl(A) \ int(A) = cl(A) ∩ cl(Ac) is called the boundary of A and is denoted by ∂A.
If cl(A) = X, then we say that A is dense in X.

Exercise 1.3. Show that the set of all dyadic rational numbers in [0, 1]

∆ = {k2−n : n ∈ N ∪ {0} and 0 < k < 2n}
is dense in [0, 1].

If int(cl(A)) = ∅, then we say that A is nowhere dense.

Exercise 1.4. Show that the ternary Cantor set

C =
{ ∞∑
n=0

an3−n : an ∈ {0, 2} for every n ∈ N ∪ {0}
}

is nowhere dense.

If x ∈ X (or E ⊆ X), a neighborhood of x (or E) is an open set A ⊆ X such that x ∈ A
(or E ⊆ A). A point x ∈ X is called an accumulation point of A if A ∩ (U \ {x}) 6= ∅ for every
neighborhood U of x.

If T1 and T2 are topologies on X such that T1 ⊆ T2, we say that T1 is weaker than T2, or that T2

is stronger than T1. Clearly the trivial topology is the weakest topology on X, while the discrete
topology is the strongest.

Exercise 1.5. Let (X, ρ) be a metric space and define a new metric by setting

ρ′(x, y) = min{1, ρ(x, y)}.
Show that ρ and ρ′ induce the same topology on X.

If E ⊆ P(X), there is a unique weakest topology T (E) on X that contains E , namely the
intersection of all topologies on X containing E . It is called the topology generated by E , and E is
sometimes called a subbase for T (E).

If T is a topology on X, a neighborhood base for T at x ∈ X is a family N ⊆ T such that
1. x ∈ V for all V ∈ N ;
2. if U ∈ T and x ∈ U , there exists V ∈ N such that x ∈ V and V ⊆ U .

A base for T is a family B ⊆ T that contains a neighborhood base for T at each x ∈ X. For
example, if X is a metric space, the collection of open balls centered at x is a neighborhood base
for the metric topology at x, and the collection of all open balls in X is a base.

Exercise 1.6. Show that if T is a topology on X and E ⊆ T , then E is a base for T iff every
nonempty U ∈ T is a union of members of E .

Exercise 1.7. Show that if E ⊆ P(X), the topology T (E) generated by E consists of ∅, X and all
unions of finite intersections of members of E .
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Example 1.8 (Furstenberg, see [1]). For a, b ∈ Z with b > 0, we set
Na,b = {a+ bn : n ∈ Z}.

In other words the set Na,b is a two-sided infinite arithmetic progression. Using the sets Na,b we
define the following curious topology on the set of integers Z by setting

T =
{
U ⊆ Z : U = ∅ or for every a ∈ U there is b ∈ N such that Na,b ⊆ U

}
.

Clearly, the union of open sets is open again. If U1, U2 ∈ T , and a ∈ U1 ∩ U2 with Na,b1 ⊆ U1 and
Na,b2 ⊆ U2 then a ∈ Na,b1b2 ⊆ U1 ∩U2. Finally, we see that Z = N0,1. Hence, T is indeed a topology
on Z. Two remarks are in order:

(a) Any nonempty open set is infinite.
(b) Any set Na,b is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

Na,b = Z \
b−1⋃
j=1

Na+j,b,

which proves that Na,b is the complement of an open set and hence closed.
Using this topology we prove that the set of the prime numbers P is infinite. Namely, we know

that every n ∈ Z \ {−1, 1} has a prime divisor p, and hence is contained in N0,p, we conclude

Z \ {−1, 1} =
⋃
p∈P

N0,p.

Now if P were finite, then
⋃
p∈P N0,p would be a finite union of closed sets by (b), and hence closed.

Consequently, {−1, 1} would be an open set, which contradicts (a).

The concept of topological space is general enough to include a great profusion of interesting
examples, but by the same reason too general to yield many interesting theorems. To build a
reasonable theory one must usually restrict the class of spaces under consideration.

A topological space (X, T ) satisfies the first axiom of countability, or is first countable, if there
is a countable neighborhood base for T at every point of X. The space (X, T ) satisfies the second
axiom of countability, or is second countable, if T has a countable base. Also, (X, T ) is separable if
X has a countable dense subset. Every metric space is first countable (the balls of rational radius
about x are a neighborhood base at x), and a metric space is second countable iff it is separable.

Exercise 1.9. Every second countable space is separable.

A sequence (xn : n ∈ N) in a topological space X converges to x ∈ X, i.e. xn −−−→n→∞ x if for every
neighborhood U of x there exists N ∈ N such that xn ∈ U for all n > N . First countable spaces
have the pleasant property that such things as closure and continuity can be characterized in terms
of sequential convergence, which may not the case in more general spaces.

Exercise 1.10. IfX is first countable and A ⊆ X, then x ∈ cl(A) iff there is a sequence (xn : n ∈ N)
in A that converges to x.

In metric spaces convergence may be expressed in terms of its metric. Let (X, ρ) be a metric
space, we say that a sequence (xn : n ∈ N) ⊆ X converges to x ∈ X, i.e. xn −−−→n→∞ x or limn→∞ xn = x
if limn→∞ ρ(xn, x) = 0.

Exercise 1.11. If X is a metric space, E ⊆ X, and x ∈ X, the following are equivalent:
(a) x ∈ cl(E);
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(b) B(x, r) ∩ E 6= ∅ for all r > 0;
(c) there is a sequence (xn : n ∈ N) in E that converges to x.

A sequence (xn : n ∈ N) in a metric space (X, ρ) is called Cauchy if ρ(xm, xn) −−−−−→m,n→∞ 0. A
subset E of X is called complete if every Cauchy sequence in E converges and its limit is in E. For
example, Rd (with the Euclidean metric) is complete, whereas Qd is not.

Exercise 1.12. A closed subset of a complete metric space is complete, and a complete subset of
an arbitrary metric space is closed.

Two metrics ρ1 and ρ2 on a set X are equivalent if and only if for every sequence (xn : n ∈ N) in
X and every x ∈ X, we have

lim
n→∞

ρ1(xn, x) = 0 ⇐⇒ lim
n→∞

ρ2(xn, x) = 0.

It is easily verified that equivalent metrics define the same open and closed sets.

Exercise 1.13. Show that two metrics ρ1 and ρ2 on a set X are equivalent iff they induce the same
topology on X.

We define the diameter of E ⊆ X to be

diam(E) = sup{ρ(x, y) : x, y ∈ E},
and we say that E is called bounded if diam(E) <∞.

Exercise 1.14. Show that diam(E) = diam(cl(E)).

We have a nice characterization of complete metric spaces:

Theorem 1.15 (Cantor’s intersection theorem). A metric space (X, ρ) is complete if and only if
for every decreasing sequence F1 ⊇ F2 ⊇ . . . of nonempty closed subsets of X with diam(Fn) −−−→n→∞ 0,
the intersection

⋂
n∈N Fn = {x0} for some x0 ∈ X.

Proof. Assume that (X, ρ) is complete. Let (Fn : n ∈ N) be a decreasing sequence of nonempty
closed sets with diameter converging to 0. Choose xn ∈ Fn. Let ε > 0 and N ∈ N such that
diam(Fn) < ε for every n ≥ N . Note that for n ≥ m ≥ N we have xn ∈ Fn ⊆ Fm so ρ(xm, xn) ≤
diam(Fm) < ε. This ensures that (xn : n ∈ N) is a Cauchy sequence and consequently convergent
to some x0 ∈ X. It is easily seen that x0 ∈

⋂
n∈N Fn. Suppose that there is y 6= x0 such that

y ∈
⋂
n∈N Fn then we have 0 < ρ(x0, y) ≤ diam(Fn) −−−→n→∞ 0, which gives a contradiction. Hence⋂

n∈N Fn = {x0}. To prove the converse implication assume that (xn : n ∈ N) is a Cauchy sequence
and let Fn = cl({xm : m ≥ n}). We immediately see that F1 ⊇ F2 ⊇ . . . and diam(Fn) −−−→n→∞ 0. Thus⋂
n∈N Fn = {x0} for some x0 ∈ X. We finally obtain that limn→∞ xn = x0. �

1.2. Continuous maps. Topological spaces are the natural setting for the concept of continuity,
which can be described in either global or local terms as follows. Let X and Y be topological spaces
and f a map from X to Y . Then f is called continuous if f−1[U ] is open in X for every open V ⊆ Y .
If x ∈ X, f is called continuous at x if for every neighborhood V of f(x) there is a neighborhood U
of x such that f [U ] ⊆ V , or equivalently, if f−1[V ] is a neighborhood of x for every neighborhood
V of f(x). We shall denote the set of continuous maps from X to Y by C(X, Y ).

Exercise 1.16. The map f : X → Y is continuous iff f is continuous at every x ∈ X.

Exercise 1.17. If the topology on Y is generated by a family of sets E , then f : X → Y is
continuous iff f−1[V ] is open in X for every V ∈ E .
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If (X1, ρ1) and (X2, ρ2) are metric spaces, a map f : X1 → X2 is called continuous at x ∈ X
if for every ε > 0 there exists δ > 0 such that ρ2(f(y), f(x)) < ε whenever ρ1(x, y) < δ in other
words, such that f−1[B(f(x), ε)] ⊇ B(x, δ). The map f is called continuous if it is continuous at
each x ∈ X and uniformly continuous if, in addition, the δ in the definition of continuity can be
chosen independent of x.

If f : X → Y is bijective and f and f−1 are both continuous, f is called a homeomorphism,
and X and Y are said to be homeomorphic. In this case the set mapping f−1 is a bijection from
the open sets in Y to the open sets in X, so X and Y may be considered identical as far as their
topological properties go. If f : X → Y is injective but not surjective, and f : X → f [X] is a
homeomorphism when f [X] ⊆ Y is given the relative topology, f is called an embedding.

We shall be particularly interested in real-valued and complex-valued functions on topological
spaces (in our case it will be mainly metric spaces). If X is any set, we denote by B(X,R) (resp.
B(X,C)) the space of all bounded real-valued (resp. complex-valued) functions on X. If X is a
topological space, we also have the spaces C(X,R) and C(X,C) of continuous functions on X, and
we define BC(X,F ) = B(X,F ) ∩ C(X,F ) (F = R or F = C). If f ∈ B(X,C), we define the
uniform norm of f to be

‖f‖∞ = sup{|f(x)| : x ∈ X}.
The function ρ(f, g) = ‖f − g‖∞ is easily seen to be a metric on B(X,C), and convergence with
respect to this metric is simply uniform convergence on X. B(X,C) is obviously complete in the
uniform metric.

Exercise 1.18. IfX is a topological space, BC(X,C) is a closed subspace of B(X,C) in the uniform
metric; in particular, BC(X,C) is complete.

1.3. Separation axioms. We now discuss the separation axioms. These are properties of a topo-
logical space, labeled T0, T1, T2, T3, T3 1

2
, T4 that guarantee the existence of open sets that separate

points or closed sets from each other. If X has the property Tj, we say that X is a Tj space or that
the topology on X is Tj.
T0 : If x 6= y, there is an open set containing x but not y or an open set containing y but not x.

T1 : If x 6= y, there is an open set containing y but not x.

T2 : If x 6= y, there are disjoint open sets U, V with x ∈ U and y ∈ V . A T2 space is also called
a Hausdorff space.

T3 : X is a T1 space, and for any closed set A ⊆ X and any x ∈ Ac there are disjoint open sets
U, V with x ∈ U and A ⊆ V . A T3 space is also called a regular space.

T3 1
2

: X is T1 and for each closed A ⊆ X and each x ∈ Ac there exists f ∈ C(X, [0, 1]) such
that f(x) = 1 and f = 0 on A. A T3 1

2
space is also called a completely regular space or a

Tychonoff space.

T4 : X is a T1 space, and for any disjoint closed sets A,B in X there are disjoint open sets U, V
with A ⊆ U and B ⊆ V . A T4 space is also called a normal space.

Exercise 1.19. X is a T1 space iff {x} is closed for every x ∈ X.

Exercise 1.20. Show that T4 =⇒ T3 1
2

=⇒ T3 =⇒ T2 =⇒ T1 =⇒ T0.

The vast majority of topological space that arise in practice are Hausdorff, or become Hausdorff
after simple modifications. For instance, the space of integrable functions with p-th power for
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p ∈ [1,∞] on a measure space (X, dµ) becomes a Hausdorff space with the Lp(X) metric ρ(f, g) =( ∫
X
|f − g|pdµ

)1/p when we identify two functions that are equal almost everywhere on X.
For a given topological space X it may happen that C(X,C) consists only of constant functions.

This is obviously the case if X is endowed with the trivial topology, but it can happen even when
X is regular. However, normal spaces have plenty of continuous functions due to Urysohn’s lemma.

Theorem 1.21 (Urysohn’s lemma). Let X be a normal space. Suppose A,B are two nonempty,
disjoint closed subsets of X. Then there is a continuous function f : X → [0, 1] such that

f(x) =

{
0 if x ∈ A,
1 if x ∈ B.

Proof. Let ∆ be the set of all dyadic rational numbers in [0, 1] as in Exercise 1.3. We first prove
the following claim:

Claim 1.22. There is a family {Ur ⊆ X : r ∈ ∆} of open sets such that A ⊆ Ur ⊆ Bc for all r ∈ ∆
and cl(Ur) ⊆ Us for r < s.

Proof of the Claim. By normality, there exist disjoint open sets V,W such that A ⊆ V , B ⊆ W .
Let U1/2 = V . Then since W c is closed, we have

A ⊆ U1/2 ⊆ cl(U1/2) ⊆ W c ⊆ Bc.

We now select Ur for r = k2−n by induction on n. Suppose that we have chosen Ur for r = k2−n

when 0 < k < 2n and n ≤ N − 1. To find Ur for r = (2j + 1)2−N (0 ≤ j < 2N−1), observe that
cl(Uj21−N ) and (U(j+1)21−N )c are disjoint closed sets (where we set cl(U0) = A and U c

1 = B), so as
above we can choose an open Ur with

A ⊆ cl(Uj21−N ) ⊆ Ur ⊆ cl(Ur) ⊆ U(j+1)21−N ⊆ Bc.

This completes the proof of the claim. �

Let Ur be as in the claim above for r ∈ ∆, and set U1 = X. For x ∈ X, define
f(x) = inf{r ∈ ∆: x ∈ Ur}.

Since A ⊆ Ur ⊆ Bc for r ∈ ∆ we clearly have

f(x) =

{
0 if x ∈ A,
1 if x ∈ B.

and 0 ≤ f(x) ≤ 1 for all x ∈ X. It remains to show that f is continuous. To this end, observe that
f(x) < α iff x ∈ Ur for some r < α iff x ∈

⋃
r<α Ur , so f−1[(−∞, α)] =

⋃
r<α Ur is open. Also

f(x) > α iff x 6∈ Ur for some r > α iff x 6∈ cl(Us) for some s > α (since Ur ⊆ cl(Us) for r < s)
iff x ∈

⋃
s>α cl(Us)

c, so f−1[(α,∞)] =
⋃
s>α cl(Us)

c is open. Hence f is continuous, since the open
half-lines generate the topology on R. The proof of Urysohn’s lemma is completed. �

Remark 1.23. If (X, ρ) is a metric space then the Urysohn lemma has a very simple proof. Namely,
recall that the distance from a point to a set is defined by setting

ρ(x,E) = inf{ρ(x, y) : x, y ∈ E}.
It suffices to take

f(x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)

and we are done. This also shows that every metric space is normal.



SELECTED TOPICS IN REAL AND COMPLEX ANALYSIS 7

Exercise 1.24. Prove that ρ(x,E) = 0 iff x ∈ cl(E).

Exercise 1.25. Prove that for every x, y ∈ X we have
|ρ(x,E)− ρ(y, E)| ≤ ρ(x, y).

Exercise 1.26. Let X be a normal space. If A is a closed subset of X and f ∈ C(A, [a, b]), there
exists F ∈ C(X, [a, b]) such that F|A = f .

1.4. Product topology. If X is any set and A an index set, and FA = {fα : X → Yα : α ∈ A} is
a family of maps from X into some topological spaces Yα, there is a unique weakest topology T on
X that makes all the fα continuous; it is called the weak topology generated by FA. Namely, T is
the topology generated by sets of the form f−1

α [Uα], where α ∈ A and Uα is open in Yα.
The most important example of this construction is the Cartesian product of topological spaces.

If {Xα : α ∈ A} is any family of topological spaces, the product topology on X =
∏

α∈AXα is the
weak topology generated by the coordinate maps πα : X → Xα. When we consider a Cartesian
product of topological spaces, we always endow it with the product topology unless we specify
otherwise. A base for the product topology is given by the sets of the form

⋂n
j=1 π

−1
αj

[Uαj
], where

n ∈ N and Uαj
is open in Xαj

for 1 ≤ j ≤ n. These sets can also be written as
∏

α∈A Uα where
Uα = Xα if α 6= α1, . . . , αn. Notice, in particular, that if A is infinite, a product of nonempty open
sets

∏
α∈A Uα is open in

∏
α∈AXα iff Uα = Xα for all but finitely many α.

Example 1.27. Let (X1, ρ1), (X2, ρ2), . . . be metric spaces and X =
∏∞

n=1Xn be its product. For
any x = (x1, x2, . . .), y = (y1, y2, . . .) ∈ X define

ρ(x, y) =
∞∑
n=1

1

2n
min{ρ(xn, yn), 1}.

It is not difficult to show that ρ is a metric on X, which defines the product topology on X. This
metric will be called the product metric on X.

Exercise 1.28. If Xα is Hausdorff for each a ∈ A, then X =
∏

α∈AXα is Hausdorff.

Exercise 1.29. If (Xα : α ∈ A) and Y are topological spaces and X =
∏

α∈AXα then f : Y → X
is continuous iff πα ◦ f is continuous for each α ∈ A.

If the spaces Xα are all equal to some fixed space X, the product X =
∏

α∈AXα is just the set XA

of mappings from A to X, and the product topology is just the topology of pointwise convergence.
More precisely:

Exercise 1.30. If X is a topological space, A is a nonempty set, and (fn : n ∈ N) is a sequence in
XA, then fn −−−→n→∞ f in the product topology iff fn(x) −−−→n→∞ f(x) for every x ∈ X.

When is a topological space metrizable, that is, when is its topology defined by a metric?

Theorem 1.31 (The Urysohn metrization theorem). Every second countable normal space is
metrizable.

Proof. Since every subset of a metrizable space is metrizable (with the same metric), it suffices to
find a metric space in which the space in question can be seen as its subset. In fact we show that
any second countable normal space X can be embedded in the Hilbert cube

H = [0, 1]× [0, 1]× . . . .
Let B = {B1, B2, . . .} be a countable basis of X. Take x ∈ X and U be any neighborhood of x.
Since B is a basis of X there must be n ∈ N such that x ∈ Bn ⊆ U . But X is normal so we find
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disjoint open sets V,W such that {x} ⊆ V and Bc
n ⊆ W , since the sets {x} and Bc

n are closed
and disjoint. Thus we get x ∈ V ⊆ cl(V ) ⊆ W c ⊆ Bn and consequently we find m ∈ N such that
x ∈ cl(Bm) ⊆ Bn ⊆ U .

Let us consider all pairs (m,n) ∈ N such that cl(Bm) ⊆ Bn. By Urysohn’s lemma (see Theorem
2.26) we may find continuous functions fm,n : X → [0, 1] such that

fm,n(x) =

{
1 if x ∈ cl(Bm),

0 if x ∈ Bc
n.

Let (gn : n ∈ N) be an enumeration of the set {fm,n : (m,n) ∈ N2}. We have proved that the
sequence (gn : n ∈ N) has the property that for every x ∈ X and any open U containing x, there is
a continuous function gn : X → [0, 1] such that gn(x) = 1 and gn(y) = 0 for every y ∈ U c. Let us
define a map

g = (g1, g2, . . .) : X → H.
We have to check that g embeds X in the Hilbert cube H. It is easy to see that g : X → H is
continuous, since every gn is. We also see that g is injective. Indeed, take x, y ∈ X so that x 6= y
then we can find a function gn : X → [0, 1] such that gn(x) = 1 and gn(y) = 0, and we are done.
Finally we will show that g is an open mapping, i.e. it maps open sets to open sets, this will ensure
that g−1 : g[X] → X is a continuous map as well. For this purpose take an open set U ⊆ X. We
have to show that g[U ] is open in g[X]. Take y ∈ g[U ] then y = g(x) for some x ∈ U . We also
see that there is n ∈ N such that gn(x) = 1 and gn(z) = 0 for every z ∈ U c. Let πn : H → [0, 1]
be a projection onto n-th coordinate and define V = π−1

n [(0, 1]]. We see that V is open, since πn
is continuous in the product topology and consequently V ∩ g[X] is open set in g[X]. Note that
y = g(x) ∈ V ∩ g[X], indeed πn(y) = πn(g(x)) = gn(x) = 1 ∈ (0, 1] and we are done. Finally, take
w ∈ V ∩ g[X] then w = g(v) for some v ∈ X and we have πn(w) ∈ (0, 1] and πn(w) = gn(v) ∈ (0, 1]
thus v ∈ U , since gn(z) = 0 for every z ∈ U c. This shows V ∩ g[X] ⊆ g[U ] and completes the proof
of the theorem. �

Exercise 1.32. Show that the ordinary ternary Cantor set is homeomorphic to the space X =
{0, 1}N.

1.5. Metric spaces. We now pay our attention on metric spaces.

Theorem 1.33. Every metric space is embeddable in a completely metrizable space.

Proof. We fix a metric space (X, ρ), we know that the space BC(X,R) with the topology of uniform
convergence is complete. We fix a ∈ X and assign to every x ∈ X the function

fx(z) = ρ(z, x)− ρ(z, a) for z ∈ X.
Since |fx(z)| ≤ ρ(x, a) we have fx ∈ BC(X,R) for every x ∈ X. We shall show that

‖fx − fy‖∞ = ρ(x, y) for all x, y ∈ X.
For any z ∈ X we have

fx(z)− fy(z) = ρ(z, x)− ρ(z, a)− ρ(z, y) + ρ(z, a) ≤ ρ(x, y).

Thus we deduce ‖fx − fy‖∞ ≤ ρ(x, y). Note also that

fx(y)− fy(y) = ρ(y, x)− ρ(y, a)− ρ(y, y) + ρ(y, a) = ρ(y, x).

Thus ‖fx − fy‖∞ ≥ ρ(x, y) and the proof is completed. �
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Theorem 1.34 (Baire’s category theorem). Assume that (X, ρ) is a complete metric space. If
{Un : n ∈ N} is a countable family of open dense sets in X, then

⋂
n∈N Un is dense in X.

Proof. Let V be a nonempty open set in X. We show that V ∩
⋂
n∈N Un 6= ∅. Since U1 is dense,

U1∩V 6= ∅. Choose an open ball B1 of diameter < 1 such that cl(B1) ⊆ U1∩V . Since U1 is open and
dense, by the same argument we get an open ball B2 of diameter < 1/2 such that cl(B2) ⊆ U1∩B1.
Proceeding similarly, we define a sequence (Bn : n ∈ N) of open balls in X such that for each n ∈ N,
we have

(a) diam(Bn) < 2−n−1;
(b) cl(B1) ⊆ U1 ∩ V ;
(c) cl(Bn+1) ⊆ Un ∩Bn.

Since (X, ρ) is a complete metric space, by Cantor’s theorem
⋂
n∈NBn =

⋂
n∈N cl(Bn) = {x} for

some x ∈ X. Clearly, x ∈ V ∩
⋂
n∈N Un. �

Baire’s theorem is a very important result in mathematics, which often used in analysis to prove
results that have existential nature. The name of this theorem comes from Baire’s terminology for
sets: If X is a topological space, a set E ⊆ X is of the first category, according to Baire, if E is a
countable union of nowhere dense sets; otherwise E is of the second category.

Corollary 1.35. Every completely metrizable space is of the second category in itself.

Proof. Let X be a completely metrizable space. Suppose X is of the first category in itself. Choose
a sequence (Fn : n ∈ N) of closed and nowhere dense sets such that X =

⋃
n∈N Fn. Then the sets

Un = F c
n are dense and open, and

⋂
n∈N Un = ∅. This contradicts the Baire category theorem. �

Theorem 1.36 (Dual form of Baire’s category theorem). Assume that (X, ρ) is a complete metric
space. If {Fn : n ∈ N} is a countable family of nowhere dense sets in X, then

⋃
n∈N Fn has empty

interior.

Proof. Since int(cl (Fn)) = int(Fn) = ∅ for every n ∈ N observe

int
( ⋃
n∈N

Fn

)
⊆ int

( ⋃
n∈N

cl(Fn)
)

=

(
cl
( ⋂
n∈N

cl(Fn)c
))c

= Xc = ∅,

by Baire’s category theorem, since cl(Fn)c is open and dense for every n ∈ N. �

From Baire’s category theorem we obtain a nontrivial result for the rational numbers.

Corollary 1.37. The set of rationals Q with the Euclidean topology is not completely metrizable.

Proof. Suppose for a contradiction that Q is a complete space with the Euclidean metric. Then

Q = {qn : n ∈ N} =
⋃
n∈N

{qn},

where each {qn} is nowhere dense in Q, so by Baire’s category theorem Q is the set of the first
category, which is impossible for complete metric spaces. �

Unfortunately, Baire’s category theorem does not allow us to decide whether the set of irrational
numbers is completely metrizable. However, the next theorem provides a pretty satisfactory answer.

Theorem 1.38 (Alexandroff’s theorem). Every Gδ subset G of a completely metrizable space X is
completely metrizable.
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We say that a subset G of a topological space X is Gδ if it is a countable intersection of open
sets. We say that F ⊆ X is Fσ if it is a countable union of closed sets.

Proof. Fix a complete metric ρ on X compatible with its topology. Let G =
⋂
n∈NGn, where Gn

is open set in X for every n ∈ N. For every y ∈ G let ρ(y, Fn) be the distance from the closed set
Fn = X \ Gn. We know that y 7→ ρ(y, Fn) are continuous. For every n ∈ N let fn : G → R be
defined by

fn(y) =
1

ρ(y, Fn)
.

Note that fn are continuous and well defined, since ρ(y, Fn) 6= 0 for every y ∈ G. We also define a
map f : G→ RN by setting

f(y) = (f1(y), f2(y), . . .).

We immediately see that f is continuous since all fn’s are. Then it turns out that

Graph(f) = {(y, f(y)) ∈ G× RN : y ∈ G}
the graph of f is a closed subset of X×RN. Indeed, suppose that a sequence (yk, f(yk)) ∈ Graph(f)
converges to a point (y, x1, x2, . . .) ∈ X × RN as k → ∞. We have to show that (y, x1, x2, . . .) ∈
Graph(f). For every n ∈ N we have

lim
k→∞

yk = y and lim
k→∞

1

ρ(yk, Fn)
= xn.

By the continuity of ρ(yk, Fn) and the fact that the fractions 1
ρ(yk,Fn)

converge to a finite number xk
as k →∞ we deduce

lim
k→∞

ρ(yk, Fn) = ρ(y, Fn) 6= 0.

Thus we obtain y 6∈ Fn, hence y ∈ Gn for every n ∈ N, which proves that y ∈ G. Moreover,

lim
k→∞

1

ρ(yk, Fn)
=

1

ρ(y, Fn)
= xn

and consequently we obtain

(y, x1, x2, . . .) =
(
y,

1

ρ(y, F1)
,

1

ρ(y, F2)
, . . .

)
= (y, f(y)) ∈ Graph(f).

So we have proved that Graph(f) is a closed subset ofX×RN. This shows that Graph(f) is complete
space as a closed subset of a complete space. Since X × RN is a complete space as a countable
Cartesian product of complete spaces. Finally, we conclude that G is completely metrizable, since
the set Graph(f) is homeomorphic with its domain, which is G. �

From the above theorem we see that the set of irrational numbers R\Q, with the usual topologies,
are completely metrizable, though the usual metrics may not be complete on them.

The converse of Alexandroff’s theorem is also true, in the following form.

Exercise 1.39. If a subset E of a metric space (X, ρ) is homeomorphic to a complete metric space
(Y, θ), then E is a Gδ subset of X.

We now show more consequences from Baire’s category theorem.

Lemma 1.40. Let E be a closed subset of a metric space (X, ρ). Then the following are equivalent:
(a) E is nowhere dense;
(b) for every x ∈ E and every ε > 0 there is y ∈ Ec such that ρ(x, y) ≤ ε.
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Proof. Assume that E is nowhere dense. For every x ∈ E we must have B(x, ε) ∩ Ec 6= ∅, since
otherwise B(x, ε) ⊆ E and this would imply ∅ 6= B(x, ε) ⊆ int(E) = ∅. We now prove the converse
implication. Since E = cl(E) it suffices to prove that int(E) = ∅. If we had B(x, ε) ⊆ int(E) for
some x ∈ int(E) and ε > 0 then B(x, ε) ∩ Ec = ∅, but this is impossible in view of (b). �

Proposition 1.41. Let C([0, 1],R) be equipped with the uniform convergence topology. The set of all
nowhere differentiable continuous functions is of the second category in C([0, 1],R). In particular,
there exist continuous functions on [0, 1] which are nowhere differentiable.

From Newton’s time through the early part of the nineteenth century, most mathematicians
assumed that a continuous real-valued function defined on an interval in the real line must be
differentiable over most of its domain. In 1834, Bernhard Bolzano gave an example of a real-valued
function continuous on an interval though differentiable nowhere on that interval, but for almost a
century afterward mathematicians treated such functions as pathological. However, in 1931 Stefan
Banach showed that, in a sense, the vast majority of continuous scalar-valued functions whose
domain is a given interval in R are not differentiable anywhere.

Proof of Proposition 1.41. We must show that the set D, of continuous functions in [0, 1] that are
differentiable at least at one point, is of the first category. To this end, for any rational numbers
u < v in [0, 1] and any n ∈ N let

D(u, v, n) = {f ∈ C([0, 1],R) : ∃x∗∈[u,v]∀x∈[u,v] |f(x)− f(x∗)| ≤ n|x− x∗|}.

To prove the claim it suffices to show that
(a) We have

D ⊆
⋃
u∈Q

⋃
v∈Q
v>u

⋃
n∈N

D(u, v, n).

(b) Each D(u, v, n) is closed.
(c) The interior of each D(u, v, n) is empty.

The property (b) and (c) will guarantee that the set D(u, v, n) is nowhere dense and by Baire’s
category theorem and property (a) the desired conclusion will follow.
Proof of property (a). If f ∈ D then there exists x0 ∈ [0, 1] such that the derivative f ′(x0) exists
and for x ∈ [0, 1] we have

f(x) = f(x0) + f ′(x0)(x− x0) + r(x),

where r is a function satisfying

lim
x→x0

r(x)

x− x0

= 0.

Therefore, we can always find rational numbers 0 ≤ u < v ≤ 1 such that x0 ∈ [u, v] and |r(x)| ≤
|x− x0| for every x ∈ [u, v]. Let n ∈ N be such that n ≥ |f ′(x0)|+ 1, then we have

|f(x)− f(x0)| ≤ |f ′(x0)||x− x0|+ |r(x)| ≤ n|x− x0|.

Proof of property (b). Let (fn : n ∈ N) be a sequence of functions in D(u, v, n) such that
limm→∞‖fm − f‖∞ = 0 for some f ∈ C([0, 1],R). We have to show that f ∈ D(u, v, n). Since
fm ∈ D(u, v, n) then there is x∗m ∈ [u, v] such that

|fm(x)− fm(x∗m)| ≤ n|x− x∗m|



SELECTED TOPICS IN REAL AND COMPLEX ANALYSIS 12

for all x ∈ [u, v]. By passing to a subsequence we can assume without loss of generality that
limm→∞ x

∗
m = x∗ for some x∗ ∈ [u, v]. Note that for every x ∈ [u, v] we have

|f(x)− f(x∗)| ≤ |f(x)− fm(x)|+ |fm(x)− fm(x∗)|+ |fm(x∗)− f(x∗)|
≤ 2‖fm − f‖∞ + |fm(x)− fm(x∗m)|+ |fm(x∗m)− fm(x∗)|
≤ 2‖fm − f‖∞ + n|x− x∗m|+ n|x∗m − x∗|.

Passing with m→∞, we obtain

|f(x)− f(x∗)| ≤ n|x− x∗|,

as desired. This proves that D(u, v, n) is closed.
Proof of property (c). We shall use (b) from Lemma 1.40 to show that int(D(u, v, n)) = ∅. For
each N > 0, let PN denote the set of all continuous piecewise-linear functions, each of whose line
segments have slopes either ≥ N or ≤ −N . We will need the following:

Claim 1.42. For every N > 0 the set PN is dense in C([0, 1],R).

Proof of Claim 1.42. It is not difficult to see that for every f ∈ C([0, 1],R) and every ε > 0 there
exists a piecewise-linear function g ∈ C([0, 1],R) such that ‖f−g‖∞ ≤ ε. Indeed, f is continuous on
the compact set [0, 1] it must be uniformly continuous. Thus we find δ > 0 such that |f(x)−f(y)| ≤ ε

2

whenever |x− y| < δ. Taking m ∈ N so that 1
m
< δ we define g as a linear function on each interval

[ k
m
, k+1
m

] for any k ∈ {0, 1, . . . ,m−1} with g( k
m

) = f( k
m

) and g(k+1
m

) = f(k+1
m

). Then we obtain that
‖f − g‖∞ ≤ ε

2
. We now approximate g by a function from PN . Indeed, g is linear on the interval

[0, 1
m

] and we consider two functions

ϕε(x) = g(x) + ε/2 and ψε(x) = g(x)− ε/2.

Then beginning at g(0) we travel on a line segment of slope N until we intersect ϕε. Then, we
reverse direction and travel on a line segment of slope −N until we intersect ψε. We obtain a
function h ∈ PN so that

ψε(x) ≤ h(x) ≤ ϕε(x) for all x ∈
[
0,

1

m

]
,

and consequently |h(x) − g(x)| ≤ ε
2
for all x ∈ [0, 1

m
]. Then we begin at h( 1

m
) and repeat this

argument on the interval [ 1
m
, 2
m

]. Continuing in this fashion we obtain a function h ∈ PN such that
‖h− g‖∞ ≤ ε

2
. Then we conclude that ‖f − h‖∞ ≤ ε and the claim is proved. �

We fix N > n, by Claim 1.42, for every f ∈ D(u, v, n) and every ε > 0, we find a function h ∈ PN
such that ‖f − h‖∞ ≤ ε. We note that D(u, v, n) ∩ PN = ∅ if N > n. Invoking Lemma 1.40 we
obtain that int(D(u, v, n)) = ∅. �

Remark 1.43. Finally we emphasize that if one is familiar with the theory of Fourier series it is
possible to show that the following function

f(x) =
∞∑
k=0

2−ke2πi3kx

is nowhere differentiable on the unit circle.
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1.6. Compactness. Let E be a subset of a topological space X. If {Uα : α ∈ A} is a family of
sets such that E ⊆

⋃
α∈A Uα, then {Uα : α ∈ A} is called a cover of E, and E is said to be covered

by the Uα’s. We say that a topological space X is compact if every open cover {Uα : α ∈ A} of X
— that is, a collection of open sets such that X =

⋃
α∈A Uα — has a finite subcover, which means

that there is a finite subset B of A such that X =
⋃
α∈B Uα.

A subset Y of a topological space X is called compact if it is compact in the relative topology;
thus Y ⊆ X is compact iff whenever {Uα : α ∈ A} is a collection of open subsets of X with
Y ⊆

⋃
α∈A Uα, there is a finite B ⊆ A with Y ⊆

⋃
α∈B Uα.

It is easy to see that we are led to the following characterization of compactness in terms of
closed sets. A family {Fα : α ∈ A} of subsets of X is said to have the finite intersection property if⋂
α∈B Fα 6= ∅ for all finite B ⊆ A.

Exercise 1.44. Show that a topological space X is compact iff for every family {Fα : α ∈ A} of
closed sets with the finite intersection property,

⋂
α∈A Fα 6= ∅.

We now list several basic facts about compact spaces.

Exercise 1.45. A closed subset of a compact space is compact.

Exercise 1.46. If F is a compact subset of a Hausdorff space X and x 6∈ F , there are disjoint open
sets U, V such that x ∈ U and F ∈ V .

Exercise 1.47. Every compact subset of a Hausdorff space is closed.

We remark that in a non-Hausdorff space, compact sets need not be closed (for example, every
subset of a space with the trivial topology is compact), and the intersection of compact sets need
not be compact. Of course, in a Hausdorff space the intersection of any family of compact sets is
always compact.

Exercise 1.48. Every compact Hausdorff space is normal.

Exercise 1.49. If X is compact and f : X → Y is continuous, then f [X] is compact. We also have
C(X,C) = BC(X,C).

Exercise 1.50. If X is compact and Y is Hausdorff, then any continuous bijection f : X → Y is a
homeomorphism.

In a metric space (X, ρ) a set E ⊆ X is called totally bounded if, for every ε > 0, E can be covered
by finitely many balls of radius ε. It is easy to see that every totally bounded set is bounded, and if
E is totally bounded, so is cl(E). We now give a characterization of compact sets in metric spaces.

Exercise 1.51. If E is a subset of the metric space (X, ρ), the following are equivalent:
(a) E is complete and totally bounded.
(b) (The Bolzano–Weierstrass property) Every sequence in E has a subsequence that converges

to a point of E.
(c) (The Heine–Borel property) If {Uα : α ∈ A} is a cover of E by open sets, there is a finite

set B ⊆ A such that {Uα : α ∈ B} covers E.

A set E that possesses the properties (a)-(c) of the previous exercise is called compact. Every
compact set is closed and bounded; the converse is false in general but true in Rd.

Exercise 1.52. Every closed and bounded subset of Rd is compact.

Theorem 1.53 (Alexander’s subbase theorem). Let (X, T ) be a topological space and E be a subbase
for T . If every collection of sets from E that covers X has a finite subcover, then X is compact.
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Proof. The proof is by contradiction. Suppose every cover of X by sets in E has a finite subcover
and X is not compact. Then the collection F of all open covers of X with no finite subcover is
nonempty and partially ordered by set inclusion. With an eye towards Zorn’s Lemma, take any
totally ordered subset {Eα : α ∈ A} in F . Then we claim E =

⋃
α∈AEα is an upper bound. To

see that E contains no finite subcover, look at any finite subcollection U1, . . . , Un. Then for every
1 ≤ j ≤ n we have Uj ∈ Eαj

for some αj. Since we have a total ordering, there is some Eα0 that
contains all of the Uj. Thus, this finite subcollection cannot cover X.

Now Zorn’s Lemma gives us a maximal elementM of F . Consider the set S =M∩E . We claim
that S is a cover of X. If not, we can find some x ∈ X that is not in any of the members of S.
SinceM does cover X, there is some U ∈M with x ∈ U . Since E is a subbase, there are V1 . . . , Vn
in E with x ∈

⋂n
j=1 Vj ⊆ U . None of these Vj are in M because then x would be an element of

some member of S. By maximality ofM, eachM∪{Vj} must contain a finite subcover of X, say
X = Vj ∪Wj, where Wj is a finite union of sets inM. Then

U ∪
n⋃
j=1

Wj ⊇
( n⋂
j=1

Vj

)
∪
( n⋃
j=1

Wj

)
⊇

n⋂
j=1

(Vj ∪Wj) ⊇ X.

This is impossible by construction ofM. Then S is a cover of X. Then because S is contained in
E , it would thus have a finite subcover by assumption. This is a contradiction however because S
is contained inM. Therefore, our original collection F must be empty so that X is compact. �

Theorem 1.54 (Tychonoff’s theorem). If (Xα, Tα) is a compact topological space for each α ∈ A
then X =

∏
α∈AXα endowed with the product topology is compact as well.

Proof. We show that any open cover of X consisting solely of elements of the form π−1
α [U ], where

U ∈ Tα contains a finite subcover of X. Let F be such a cover, and define

Uα = {U ∈ Uα : π−1
α [U ] ∈ F}.

We claim that there is at least one α ∈ A such that Uα covers Xα. If not, then for each α ∈ A, there
is some xα ∈ Xα such that xα is not in the union of all the elements in Uα. Now define f ∈ X via
f(α) = xα. Then f would not be contained in any of the members of F , a contradiction since F is
a cover of X. So choose α such that Uα is a cover of Xα. By compactness, there are U1, . . . , Un ∈ Uα
such that Xα ⊆

⋃n
j=1 Uj. Then a finite cover of X is given by

{π−1
α [Uj] : 1 ≤ j ≤ n}.

Take as a subbase for the product topology on X the collection

E = {π−1
α [U ] : U ∈ Tα for each α ∈ A}.

As we have shown any subcollection of this set that covers X has a finite subcover. Thus by
Alexander’s subbase theorem, X is compact and the proof is completed. �

If X is a topological space and F ⊆ C(X,C), F is called equicontinuous at x ∈ X if for every
ε > 0 there is a neighborhood U of X such that |f(y)− f(x)| < ε for all y ∈ U and all f ∈ F , and
F is called equicontinuous if it is equicontinuous at each x ∈ X. Also, F is said to be pointwise
bounded if {f(x) : f ∈ F} is a bounded subset of C for each x ∈ X.

Exercise 1.55 (Arzelá–Ascoli Theorem I). Let X be a compact Hausdorff space. If F is an
equicontinuous, pointwise bounded subset of C(X,C), then F is totally bounded in the uniform
metric, and the closure of F in C(X,C) is compact.
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Exercise 1.56 (Arzelá–Ascoli Theorem II). Let X be a σ-compact LCH space. If (fn : n ∈ N) is an
equicontinuous, pointwise bounded sequence in C(X,C), there exist f ∈ C(X,C) and a subsequence
of (fn : n ∈ N) that converges to f uniformly on compact sets.

2. Density and equidistribution

2.1. Density. This section is based on [4] and [3]. A very important role in analysis is played by
the fact that the set of rational numbers Q is countable and dense in R. In other words every real
number can be seen as a limit of a sequence of rational numbers. This fact can be deduced from
the theorem stated below, which is a beautiful application of the pigeonhole principle.

Remark 2.1. The pigeonhole principle or Dirichlet’s box principle states that if n objects are
placed in r boxes, where r < n, then at least one of the boxes contains more than one object.

For any x ∈ R the integer and fractional part of x will be denoted respectively by

bxc = max{n ∈ Z : n ≤ x} and {x} = x− bxc.

Theorem 2.2 (Dirichlet). Let α and Q be real numbers, Q ≥ 1. There exist a, q ∈ Z such that

1 ≤ q ≤ Q, (a, q) := gcd(a, q) = 1,

and
|α− a/q| < (qQ)−1.

Proof. Let N = bQc. Suppose that {qα} ∈ [0, 1/(N + 1)] for some positive integer q ≤ N . If
a = bqαc, then

0 ≤ {qα} = qα− a < 1/(N + 1),

and so
|α− a/q| < q−1(N + 1)−1 < (qQ)−1 ≤ q−2.

Similarly, if {qα} ∈ [N/(N + 1), 1) for some positive integer q ≤ N and if a = bqαc+ 1, then

N/(N + 1) ≤ {qα} = qα− a+ 1 < 1,

implies that
|qα− a| ≤ 1/(N + 1)

and so
|α− a/q| < q−1(N + 1)−1 < (qQ)−1 ≤ q−2.

If {qα} ∈ [1/(N + 1), N/(N + 1)) for all 1 ≤ q ≤ N , then each of the N real numbers {qα} lies in
one of the N − 1 intervals

[j/(N + 1), (j + 1)/(N + 1)), 1 ≤ j ≤ N − 1.

By Dirichlet’s box principle, there exist integers j ∈ [1, N ] and q1, q2 ∈ [1, N ] such that 1 ≤ q1 <
q2 ≤ N and

{q1α}, {q2α} ∈ [j/(N + 1), (j + 1)/(N + 1)).

Let q = q2 − q1 ∈ [1, N − 1] and a = bq2αc − bq1αc. Then
|qα− a| = |(q2α− bq2αc)− (q1α− bq1αc)| = |{q2α} − {q1α}| < (N + 1)−1 < Q−1.

This completes the proof. �

Exercise 2.3. Using the previous theorem show that every real number is a limit of a sequence of
rational numbers.
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Exercise 2.4. Assume that α 6∈ R. Using Theorem 2.2 show that the sequence ({nα} : n ∈ N) is
dense in [0, 1].

Another beautiful application of the pigeonhole principle contained in a paper of Erdös and
Szekeres on Ramsey problems is the following:

Exercise 2.5. In any sequence a1, a2, . . . , amn+1 of mn + 1 distinct real numbers, there exists an
increasing or decreasing subsequence of length m+ 1.

We now illustrate that the density of rational numbers is very useful.

Proposition 2.6. For every positive numbers a1, . . . , an and positive weights q1, . . . , qn satisfying

q1 + . . .+ qn = 1,

we have
aq11 · . . . · aqnn ≤ q1a1 + . . .+ qnan.

Proof. We first assume that all weights q1, . . . , qn are positive rational numbers. We can assume
that

qi =
ki
m
, for i ∈ {1, . . . , n},

where ki are integers such that k1 + . . .+ kn = m. Then invoking the inequality between arithmetic
and geometric means we obtain

n∑
i=1

qiai = k1
a1

m
+ . . .+ kn

an
m

≥ m

((
a1

m

)k1
· . . . ·

(
an
m

)kn)1/m

≥ aq11 · . . . · aqnn .

If now all weights q1, . . . , qn are arbitrary positive real numbers. We choose for every i ∈ {1, . . . , n}
a sequence of positive rational numbers (qi,l : l ∈ N) such that

lim
l→∞

qi,l = qi and
∑
i=1

qi,l = 1.

Then we have
a
q1,l
1 · . . . · aqn,l

n ≤ q1,la1 + . . .+ qn,lan,

and taking l→∞ we obtain the desired claim. �

Exercise 2.7. Show that equality holds in the previous proposition iff a1 = . . . = an.

Exercise 2.8. Using mathematical induction show that if a1, a2, . . . , an are all positive numbers
such that a1 · a2 · . . . · an = 1, then

a1 + a2 + . . .+ an ≥ n.

Using this show that for every positive numbers x1, x2, . . . , xn we have

(x1 · x2 · . . . · xn)1/n ≤ x1 + x2 + . . .+ xn
n

.
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Remark 2.9. Proposition 2.6 can be used to prove Hölder’s inequality which asserts that for any
measure space (X,B(X), µ) and every 1 ≤ p, q ≤ ∞ if 1

p
+ 1

q
= 1 and f ∈ Lp(X) and g ∈ Lq(X)

then we have

‖fg‖L1(X) ≤ ‖f‖Lp(X)‖g‖Lq(X). (2.10)

However, we show a different proof, which uses the best constant trick. We assume that ‖f‖Lp(X) =
‖g‖Lq(X) = 1 and observe

‖fg‖L1(X) =

∫
X

|fg|dµ

=

∫
X

(|f |p)1/p(|g|q)1/qdµ

=

∫
X

max{|f |p, |g|q}dµ

≤
∫
X

|f |pdµ+

∫
X

|g|qdµ

= 2‖f‖Lp(X)‖g‖Lq(X).

Thus we have proved that

‖fg‖L1(X) ≤ 2‖f‖Lp(X)‖g‖Lq(X). (2.11)

We now show how to improve this inequality. Let C > 0 be the smallest constant such that for all
measure spaces (X,B(X), µ) the following inequality holds

‖fg‖L1(X) ≤ C‖f‖Lp(X)‖g‖Lq(X). (2.12)

By (2.11) we know that C ≤ 2. We shall show that C ≤ 1. Indeed, let F (x, y) = f(x)f(y) and
G(x, y) = g(x)g(y) then by (2.12) we get

‖fg‖2
L1(X) = ‖FG‖L1(X×X)

≤ C‖F‖Lp(X×X)‖G‖Lq(X×X)

= C‖f‖2
Lp(X)‖g‖2

Lq(X).

Thus we have proved inequality (2.12) with a new constant

‖fg‖L1(X) ≤ C1/2‖f‖Lp(X)‖g‖Lq(X). (2.13)

Therefore, by the definition of C > 0 we must have C ≤ C1/2, dividing both sides by C1/2 (we can
do this since C ≤ 2) we finally obtain that C ≤ 1 as claimed.

Exercise 2.14. Using Hölder’s inequality show that for every 1 ≤ p ≤ ∞ and f, g ∈ Lp(X) we
have

‖f + g‖L1(X) ≤ ‖f‖Lp(X) + ‖g‖Lq(X).

Example 2.15 (Gelfand). We will consider the sequence of the first digits of powers of 2. Namely,
for m ∈ N let

dm = first digit of 2m.

For instance we have d1 = 2, d2 = 4, d3 = 8, d4 = 1, d5 = 3, . . .. Here is a list of the first 20 powers
of 2:
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2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192,

16384, 32768, 65536, 131072, 262144, 524288, 1048576.

The sequence of first digits of the first 40 powers of 2 is:

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1,

2, 4, 8, 1, 3, 6, 1, 2, 5, 1.

Do we ever see a 7, a 9? Gelfand’s question asks: how often do we see a power of 2 that starts with
a 7, and with what frequency? We show here that there are infinitely many m ∈ N such that 2m

starts with a 7. Surprisingly, they have a well-defined frequency. The existence of this frequency
will follow from the uniform distribution of multiples of an irrational number modulo 1. We obtain
this fact later.

The crucial observation is that the first digit of 2m is equal to k if and only if there is a nonnegative
integer s such that

k10s ≤ 2m < (k + 1)10s.

Taking logarithms with base 10 we obtain

s+ log10 k ≤ m log10 2 < s+ log10(k + 1),

but since 0 ≤ log10 k and log10(k + 1) ≤ 1, taking fractional parts we obtain that

s = bm log10 2c

and that

log10 k ≤ m log10 2− bm log10 2c < log10(k + 1). (2.16)

Since the number log10 2 is irrational, it follows that the sequence ({m log10 2} : m ∈ N) is dense in
[0, 1]. Therefore, there are infinitely many m ∈ N such that (2.16) holds. This gives an affirmative
answer to the first part of Gelfand’s question. We shall handle the second part later in this section.

2.2. Weierstrass’s theorem. In this section we present two variants of Weierstrass’s theorem
concerning a uniform approximation of an arbitrary continuous function on an interval [a, b] by
polynomials.

Theorem 2.17. Every continuous function on an interval [a, b] can be uniformly approximated by
polynomials.

Proof. Using a linear transformation

[a, b] 3 s 7→ s− a
b− a

,

we see that our task is reduced to the special case when [a, b] = [0, 1]. Next, for any continuous
function f on [0, 1] let us denote by fn the n-th Bernstein polynomial defined by

fn(t) =
n∑
k=0

(
n

k

)
f

(
k

n

)
tk(1− t)n−k, for t ∈ [0, 1].
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We show that fn converges to f uniformly on [0, 1]. Let us fix ε > 0. Since the function f is
uniformly continuous on [0, 1], there exists δ > 0 such that |f(t)− f(s)| < ε as long as |t− s| < δ.
Invoking the identity

n∑
k=0

(
n

k

)
tk(1− t)n−k = 1,

we easily get

|f(t)− fn(t)| ≤
n∑
k=0

(
n

k

)∣∣∣∣f(t)− f
(
k

n

)∣∣∣∣tk(1− t)n−k.
Then we write

|f(t)− fn(t)| ≤ ε
n∑
k=1

|t−n/k|<δ

(
n

k

)
tk(1− t)n−k + 2M

n∑
k=1

|t−n/k|≥δ

(
n

k

)
tk(1− t)n−k

≤ ε+ 2‖f‖∞δ−2

n∑
k=0

(
n

k

)(
t− k

n

)2

tk(1− t)n−k.

Using the identity
n∑
k=0

(
n

k

)(
t− k

n

)2

tk(1− t)n−k =
t(1− t)

n
, (2.18)

we get the estimate ε+ 2‖f‖∞δ−2n−1. Therefore,

lim
n→∞

‖f − fn‖∞ = 0.

The proof of Theorem 2.17 is completed. �

Exercise 2.19. Show the following identities
n∑
k=0

(
n

k

)
tksn−k = (t+ s)n,

n∑
k=0

k

n

(
n

k

)
tksn−k = t(t+ s)n−1,

n∑
k=0

k2

n2

(
n

k

)
tksn−k =

t

n
(t+ s)n−1 +

n− 1

n
t2(t+ s)n−2.

Exercise 2.20. Using the previous exercise verify identity (2.18).

Theorem 2.21. The trigonometric polynomials

a0 +
n∑
k=1

(
ak cos kt+ bk sin kt

)
are dense in the class of all continuous and periodic functions with period 2π.

Proof. Let f be a continuous and periodic function with period 2π. If f is even, then we may treat
it as a function on [0, π]. Further, we may define a continuous function g as follows

g(t) = f(arccos t), for t ∈ [−1, 1].
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Then f(t) = g(cos t). Now applying Theorem 2.17 to the function g we see that the conclusion for
even functions follows. Assume now that the function f is odd. Therefore the function

f1(t) = f(t) sin t

is even and hence we can approximate it by trigonometric polynomials. This shows that for an
arbitrary function f the function f(t) sin t can be approximated by trigonometric polynomials.
Consequently, this means that the same is true for f(t) sin2 t. Further, we can approximate by
trigonometric polynomials the function f(t) cos2 t. Indeed, we consider f(π/2 − t) instead of f(t)
and then we change the variable t 7→ π/2−t, which preserves the class of trigonometric polynomials.
Since sin2 t + cos2 t = 1, we see that we can approximate f by trigonometric polynomials and the
conclusion follows. �

Exercise 2.22. If X is a compact topological space, and (fn : n ∈ N) is a monotonically increasing
sequence (meaning fn(x) ≤ fn+1(x) for all n ∈ N and x ∈ X) of continuous real-valued functions
on X which converges pointwise to a continuous function f , then the convergence is uniform. The
same conclusion holds if (fn : n ∈ N) is monotonically decreasing instead of increasing.

Exercise 2.23. There exists a sequence (pn : n ∈ N) of polynomials which is uniformly convergent
to the function

√
x on [0, 1]. Hint: Define (pn : n ∈ N) recursively by setting p1(x) = 0 and

pn+1(x) = pn(x) + 1
2
(x− pn(x))2 for n ∈ N and use the previous problem.

2.3. Equidistribution. Here we discuss Weyl’s theorem on equidistributed sequences.

Definition 2.24. A sequence (ak : k ∈ N∪{0}) ⊆ [0, 1] is called equidistributed if for every function
f ∈ C([0, 1],C) we have that

lim
N→∞

1

N

N−1∑
k=0

f(ak) =

∫ 1

0

f(x)dx. (2.25)

Theorem 2.26. The following statements are equivalent:
(a) The sequence (ak : k ∈ N ∪ {0}) ⊆ [0, 1] is equidistributed.
(b) For every m ∈ Z \ {0} we have

lim
N→∞

1

N

N−1∑
k=0

e2πimak = 0.

(c) For any number a, b with 0 ≤ a < b ≤ 1

lim
N→∞

#{k ∈ [0, N) ∩ Z : ak ∈ [a, b]}
N

= b− a.

Proof. We first prove the equivalence of (a) and (c). Assume (a) and fix 0 ≤ a < b ≤ 1. Given a
sufficiently small ε > 0, we define continuous functions f−, f+ : [0, 1]→ [0, 1] that approximate the
indicator function 1[a,b] by

f+(x) =


1 if a ≤ x ≤ b;

ε−1(x− (a− ε)) if max{0, a− ε} ≤ x < a;

ε−1((b+ ε)− x) if b < x ≤ max{b+ ε, 1};
0 otherwise,
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and

f−(x) =


1 if a+ ε ≤ x ≤ b− ε;
ε−1(x− a) if a ≤ x < a+ ε;

ε−1(b− x) if b− ε < x ≤ b;

0 otherwise.

Notice that f−(x) ≤ 1[a,b](x) ≤ f+(x) for all x ∈ [0, 1], and∫ 1

0

(f+(x)− f−(x))dx ≤ 2ε.

It follows that
1

N

N−1∑
k=0

f−(ak) ≤
1

N

N−1∑
k=0

1[a,b](ak) ≤
1

N

N−1∑
k=0

f+(ak).

By equidistribution this implies that

b− a− 2ε ≤
∫ 1

0

f−(x)dx ≤ lim inf
N→∞

1

N

N−1∑
k=0

1[a,b](ak)

≤ lim sup
N→∞

1

N

N−1∑
k=0

1[a,b](ak) ≤
∫ 1

0

f+(x)dx ≤ b− a+ 2ε.

Thus (c) is proved

lim inf
N→∞

1

N

N−1∑
k=0

1[a,b](ak) = lim sup
N→∞

1

N

N−1∑
k=0

1[a,b](ak) = b− a.

Assume that (c) holds. Given a continuous function f on [0, 1] and given ε > 0, we find a step
function g =

∑m
j=1 cj1Ij (cj ∈ C and intervals Ij ⊆ [0, 1]) such that ‖f − g‖∞ < ε/3. Since g is a

finite linear combination of step functions, there is an N0 such that for N ≥ N0 we have∣∣∣ 1

N

N−1∑
k=0

g(ak)−
∫ 1

0

g(x)dx
∣∣∣ < ε/3.

Since ∣∣∣ ∫ 1

0

f(x)dx−
∫ 1

0

g(x)dx
∣∣∣ ≤ ‖f − g‖∞ < ε/3

and ∣∣∣ 1

N

N−1∑
k=0

g(ak)−
1

N

N−1∑
k=0

f(ak)
∣∣∣ ≤ ‖f − g‖∞ < ε/3,

it follows that for N ≥ N0 we have∣∣∣ 1

N

N−1∑
k=0

f(ak)−
∫ 1

0

f(x)dx
∣∣∣ < ε,

thus (a) holds.
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We now prove the equivalence of (a) and (b). In one direction this is clear. To see that (b) implies
(a) we fix a continuous function f on [0, 1]. Then for a given ε > 0 by Theorem 2.21 we pick a
trigonometric polynomial p such that ‖f − p‖∞ < ε/3. Since

p(x) =
M∑

m=−M

cme
2πimx

for some M ∈ N and cm ∈ C, then by (b) we have

lim
N→∞

1

N

N−1∑
k=0

p(ak) = c0 =

∫ 1

0

p(x)dx.

Hence a 3-epsilon argument as above yields∣∣∣ 1

N

N−1∑
k=0

f(ak)−
∫ 1

0

f(x)dx
∣∣∣ < ε,

and the proof is completed. �

Example 2.27. The sequence ({k
√

2} : k ∈ N∪ {0}) is equidistributed on [0, 1]. We check this by
verifying condition (b) of Theorem 2.26. Indeed if m ∈ Z \ {0} then

lim
N→∞

1

N

N−1∑
k=0

e2πim(k
√

2−bk
√

2c) = lim
N→∞

1

N

e2πiNm
√

2 − 1

e2πim
√

2 − 1
= 0,

since m
√

2 is never a rational and thus the denominator never vanishes.
Naturally, the same conclusion is valid for any other irrational number α ∈ R \Q in place of

√
2.

Example 2.28. We now return to the second part of Gelfand’s question. We recall that for m ∈ N
we consider

dm = first digit of 2m.

Fix an integer 1 ≤ k ≤ 9. We will find the frequency in which k appears as a first digit of 2m,
precisely, we would like to compute

lim
N→∞

#{m ∈ {1, . . . , N} : dm = k}
N

.

As we mentioned above it is essential that the first digit of 2m is equal to k if and only if there is a
nonnegative integer s such that

k10s ≤ 2m < (k + 1)10s.

Taking logarithms with base 10 we obtain

s+ log10 k ≤ m log10 2 < s+ log10(k + 1),

but since 0 ≤ log10 k and log10(k + 1) ≤ 1, taking fractional parts we obtain that

s = bm log10 2c
and that

log10 k ≤ m log10 2− bm log10 2c < log10(k + 1).

Since the number log10 2 is irrational, it follows from Example 2.27 that the sequence({
m log10 2

}
: m ∈ N

)
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is equidistributed in [0, 1]. Using (c) from Theorem 2.26 with [a, b] = [log10 k, log10(k+1)] we obtain
that

lim
N→∞

#{m ∈ {1, . . . , N} : dm = k}
N

= log10(k + 1)− log10 k = log10(1 + 1/k).

This gives the frequency in which k appears as first digit of 2m. Notice that
9∑

k=1

log10(1 + 1/k) = 1,

as expected. Moreover, the digit with the highest frequency that appears as the first digit in the
decimal expansion of the sequence (2m : m ∈ N) is 1, while the one with the lowest frequency is 9.

Exercise 2.29 (Kronecker). Suppose that N ∈ N and
{x1, x2, . . . , xN , 1}

is a linearly independent set over the rationals. Prove that for any ε > 0 and any complex numbers
z1, z2, . . . , zN with |zj| = 1, there exists an integer L ∈ Z such that

|e2πiLxj − zj| < ε, for all 1 ≤ j ≤ N.

Exercise 2.30. Suppose that (X,M, µ) be a finite measure space, f ∈ L1(X,µ), S ⊆ C is a closed
set, and the averages

AE(f) =
1

µ(E)

∫
E

f(x)dµ(x) ∈ S

for every E ∈M with µ(E) > 0. Then f(x) ∈ S for almost every x ∈ X.

Exercise 2.31. If z1, . . . , zN are complex numbers then there is a subset S of {1, . . . , N} for which∣∣∣∑
k∈S

zk

∣∣∣ ≥ 1

π

N∑
k=1

|zk|.

3. Algebraic and transcendental numbers

This section is based on [6] and [1].

3.1. Liouville numbers. If one can show that the set of numbers in an interval that lack a certain
property is either countable, or a nullset, or a set of the first category, then it follows that there
exist points of the interval that have the property in question, in fact, most points of the interval
(in the sense of cardinal number, or measure, or category, respectively) have the property. This
method in the context of category has been presented in the first section. Using the same kind of
ideas one can prove the following:

Exercise 3.1. Show that not every Lebesgue measurable subset of R is a Borel set. Hint: Use the
ternary Cantor set and the fact that the Lebesgue measure is complete.

Another illustration of this method will be the existence of transcendental numbers. A complex
number z is called algebraic if it satisfies some equation of the form

anz
n + . . .+ a1z + a0 = 0

with integer coefficients, not all zero. The degree of an algebraic number z is the smallest positive
integer n such that z satisfies an equation of degree n. For instance, any rational number is algebraic
of degree 1,

√
2 is algebraic of degree 2, and

√
2 +
√

3 is algebraic of degree 4. Any real number
that is not algebraic is called transcendental. Do there exist transcendental numbers?
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Exercise 3.2. Show that the set of real algebraic numbers is countable.

Exercise 3.2 gives perhaps the simplest proof of the existence of transcendental numbers. It
should be noted that it is not an indirect proof. But due to its existential nature we know nothing
concrete about transcendental numbers. An older and more informative proof of the existence of
transcendental numbers is due to Liouville. His proof is based on the following:

Proposition 3.3. For any real algebraic number z of degree n > 1 there exists a positive integer
M such that ∣∣∣∣z − p

q

∣∣∣∣ > 1

Mqn
(3.4)

for all p, q ∈ Z with q > 0.

Proof. Let f(x) be a polynomial of degree n with integer coefficients for which f(z) = 0. Let M be
a positive integer such that |f ′(x)| ≤M whenever |z − x| ≤ 1. Then, by the mean value theorem,

|f(x)| = |f(x)− f(z)| ≤M |x− z| whenever |z − x| ≤ 1. (3.5)

Now consider any two integers p and q, with q > 0. We wish to show (3.4). This is evidently
true in case |z − p/q| > 1, so we may assume that |z − p/q| ≤ 1. Then, by (3.5), we have
|f(p/q)| ≤M |z − p/q| and therefore∣∣∣∣qnf(pq

)∣∣∣∣ ≤Mqn
∣∣∣∣z − p

q

∣∣∣∣. (3.6)

The equation f(x) = 0 has no rational root (otherwise z would satisfy an equation of degree less
than n). Moreover, qnf(p/q) is an integer. Hence the left hand-side of (3.6) is at least 1 and we
conclude that (3.4) must hold. Equality cannot hold, because z is irrational. �

Proposition 3.7. The number

a =
∞∑
n=1

1

2n!

is transcendental.

Proof. It is not difficult to show that a 6∈ Q. Suppose that a is an algebraic number of degree
N > 1. Then by Proposition 3.3 we can find an integer M ∈ N such that for all k ∈ N we have

∞∑
n=k+1

1

2n!
=

∣∣∣∣a− k∑
n=1

1

2n!

∣∣∣∣ ≥ 1

M2k!N
,

since
∑k

n=1
1

2n! is a number with denominator 2k!. On the other hand, we have
∞∑

n=k+1

1

2n!
≤ 2

2(k+1)!
,

hence
1

M2k!N
≤ 2

2(k+1)!
⇐⇒ 2k!(1+k−N) ≤ 2M,

which is impossible for sufficiently large k ∈ N. �
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A real number z is called a Liouville number if z is irrational and has the property that for each
positive integer n there exist integers p and q such that∣∣∣∣z − p

q

∣∣∣∣ < 1

qn
and q > 1.

Theorem 3.8 (Liouville). Every Liouville number is transcendental.

Proof. Suppose some Liouville number z is algebraic, of degree n. Then n > 1, since z is irrational.
By Proposition 3.3 there exists a positive integer M such that∣∣∣∣z − p

q

∣∣∣∣ > 1

Mqn
(3.9)

for all p, q ∈ N with q > 0. Choose a positive integer k such that 2k ≥ 2nM . Because z is a Liouville
number there exist integers p and q, with q > 1, such that∣∣∣∣z − p

q

∣∣∣∣ < 1

qk
. (3.10)

Combining (3.9) and (3.10) it follows that 1/qk > 1/(Mqn). Hence M > qk−n ≥ 2k−n ≥ M a
contradiction. �

Let us examine the set E of Liouville numbers. From the definition it follows at once that

E = R \Q ∩
⋂
n∈N

Gn, (3.11)

where
Gn =

⋃
q≥2

⋃
p∈Z

(p/q − 1/qn, p/q + 1/qn)

is a union of open intervals. Moreover, Gn includes every number of the form p/q, with q ≥ 2,
hence Q ⊆ Gn. Therefore Gn is a dense open set, and so its complement is nowhere dense. Since,
by (3.11), we have

Ec = Q ∪
⋃
n∈N

Gc
n.

It follows that Ec is of the first category. Thus Baire’s theorem implies that Liouville transcendental
numbers exist in every interval, they are “generic” in the sense of category.

What about the measure of E? From (3.11) it follows that E ⊆ Gn for every n ∈ N. For any
integer q ≥ 2 let

Gn,q =
⋃
p∈Z

(p/q − 1/qn, p/q + 1/qn).

For any two positive integers m and n we have

E ∩ (−m,m) ⊆ Gn ∩ (−m,m)

=
⋃
q≥2

Gn,q ∩ (−m,m) ⊆
⋃
q≥2

mq⋃
p=−mq

(p/q − 1/qn, p/q + 1/qn).
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Therefore E ∩ (−m,m) can be covered by a sequence of intervals such that for any n > 2, we have∑
q≥2

mq∑
p=−mq

2/qn =
∑
q≥2

(2mq + 1)(2/qn)

≤
∑
q≥2

(4mq + q)(1/qn)

= (4m+ 1)
∑
q≥2

(1/qn−1)

≤ 4m+ 1

n− 2
.

It follows that E∩ (−m,m) is a nullset for every m, and therefore E is a nullset. Thus E is small in
the sense of measure, but large in the sense of category. The sets E and Ec provide a decomposition
of the line into a set of measure zero and a set of the first category.

Exercise 3.12. The construction of the Cantor set by starting with [0, 1] and successively removing
open middle thirds of intervals has an obvious generalization. If I is a bounded interval and
α ∈ (0, 1), let us call the open interval with the same midpoint as I and length equal to α times
the length of I the „open middle αth” of I. If (αj)j∈N is any sequence of numbers in (0, 1), then, we
can define a decreasing sequence (Kj)j≥0 of closed sets as follows: K0 = [0, 1], and Kj is obtained
by removing the open middle αjth from each of the intervals that make up Kj−1. The resulting
limiting set K =

⋂
j∈NKj is called a generalized Cantor set. Show that

(a) K is compact, nowhere dense and has no isolated points.
(b) Cardinality of K is c.
(c) If αj = 1

3
for all j ∈ N then we obtain the ordinary ternary Cantor set, and it has the

Lebesgue measure zero.
(d) If αj −−−→j→∞ 0 then the Lebesgue measure of K will be positive and in fact for any β ∈ (0, 1)

one can choose αj so that the Lebesgue measure will be β.

Exercise 3.13. Consider R with the Lebesgue measure λ. Construct a set X ⊆ R such that for
every open non-empsty set V ⊆ R we have

λ(V ∩X) > 0 and λ(V ∩Xc) > 0.

Exercise 3.14. Let λ be the usual measure on X = {0, 1}N , and let µ be Lebesgue measure on
[0, 1]; write Λ for the domain of λ and Σ for the domain of µ.

(a) For x ∈ X set φ(x) =
∑∞

i=0 2−i−1x(i). Then
(i) φ−1[E] ∈ Λ and λ(φ−1[E]) = µ(E) for every E ∈ Σ;
(ii) φ[F ] ∈ Σ and µ(φ[F ]) = λ(F ) for every F ∈ Λ.

(b) There is a bijection φ̃ : X → [0, 1] which is equal to φ at all but countably many points, and
any such bijection is an isomorphism between (X,Λ, λ) and ([0, 1],Σ, µ).

3.2. Hermite’s theorem. Squaring the circle is a problem proposed by ancient geometers. It was
the challenge of constructing a square with the same area as a given circle by using only a finite
number of steps with compass and straightedge. In 1882, the task was proven to be impossible,
as a consequence of the Lindemann–Weierstrass theorem which proves that π is a transcendental,
rather than an algebraic irrational number. It had been known for some decades before then that
the construction would be impossible if π were transcendental, but π was not proven transcendental
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until 1882. A bit simpler is to show that e is transcendental. Before we do this we show that e is
irrational.

Proposition 3.15. The number

e =
∑
k≥0

1

k!

is irrational.

Proof. To start with, it is rather easy to see (as did Fourier in 1815) that e =
∑

k≥0 1/k! is irrational.
Indeed, if we had e = a/b for integers a and b > 0, then we would get

n!be = n!a

for every integer n ≥ 0. But this cannot be true, because on the right-hand side we have an integer,
while the left-hand side with

e =

(
1 +

1

1!
+

1

2!
+ . . .+

1

n!

)
+

(
1

(n+ 1)!
+

1

(n+ 2)!
+ . . .

)
decomposes into an integral part

n!b

(
1 +

1

1!
+

1

2!
+ . . .+

1

n!

)
and a second part

b

(
1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

)
which is approximately b

n
, so that for large n it certainly cannot be integral. It is larger than b

n+1

and smaller than b
n
, as one can see from a comparison with a geometric series

1

n+ 1
<

1

(n+ 1)
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ . . .

<
1

(n+ 1)
+

1

(n+ 1)2
+

1

(n+ 1)3
+ . . . <

1

n
.

We get a contradiction and the proof is completed. �

Theorem 3.16 (Hermite’s theorem). The number

e =
∑
k≥0

1

k!

is transcendental.

Proof. If e were an algebraic number, then we could find a polynomial P with rational coefficients
such that

P (x) = anx
n + . . .+ a1x+ a0

satisfying P (e) = 0. For every prime number p ∈ P satisfying p > n and p > |a0| we define an
auxiliary polynomial by setting

fp(x) =
xp−1

(p− 1)!

n∏
k=1

(k − x)p
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and we also set

Fp(x) = fp(x) +
M∑
j=1

f (j)
p (x),

where M = (n+ 1)p− 1 is the degree of the polynomial fp. Since f
(M+1)
p (x) = 0 we obtain

Fp(x)− F ′p(x) = fp(x),

and consequently (
e−xFp(x)

)′
= −e−xFp(x) + e−xF ′p(x) = −e−xfp(x).

By the mean-value theorem we get

e−xFp(x)− Fp(0) = −xe−θxxfp(θxx)

for some θx ∈ [0, 1]. Thus
Fp(x)− exFp(0) = −xe(1−θx)xfp(θxx).

If x is fixed and p→∞, then
lim
p→∞

(
Fp(x)− exFp(0)

)
= 0,

since for every y ∈ R we have limn→∞
yn

n!
= 0. We also obtain

lim
p→∞

n∑
k=0

akFp(k) = lim
p→∞

( n∑
k=0

akFp(k)− Fp(0)
n∑
k=0

ake
k

)
= 0. (3.17)

Since j! divides all coefficients of j-th derivative of an arbitrary polynomial we get for a suitable
polynomials Pj with integer coefficients that

f (j)
p (x) =

j!

(p− 1)!
Pj(x).

Hence,

Fp(0) =
∑
j=p−1

f (j)
p (0) =

1

(p− 1)!

∑
j=p−1

j!Pj(0) ≡ Pp−1(0)(modp),

since
fp(0) = f ′p(0) = . . . = f (p−2)

p (0) = 0.

Moreover all numbers 1
(p−1)!

∑
j=p−1 j!Pj(0) ∈ Z and are divisible by p. Similarly, for f (i)

p (k) = 0 for
i ∈ {1, . . . , p− 1} and k ∈ {1, . . . , n}, thus

Fp(k) =
∑
j=p

f (j)
p (k) =

1

(p− 1)!

∑
j=p

j!Pj(k) ≡ 0(modp).

Finally,
n∑
k=0

akFp(k) ≡ a0Fp(0) ≡ a0Pp−1(0) ≡ a0(n!)p 6≡ 0(modp).

This contradicts with (3.17), since a sequence of integer that converges to 0 must be constant for
all but finitely many terms. This completes the proof of theorem. �
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Remark 3.18. We now know that e is transcendental. In 1882 Lindemann, following the ideas from
Hermite’s proof, showed that π is transcendental as well. For example, it is unknown whether π+ e
is transcendental, though at least one of π+e and πe must be transcendental. From Theorem 3.8 we
know that all Liouville numbers are transcendental, but not vice versa. Any Liouville number must
have unbounded partial quotients in its continued fraction expansion. Using a counting argument
one can show that there exist transcendental numbers which have bounded partial quotients and
hence are not Liouville numbers.

Using the explicit continued fraction expansion of e, one can show that e is not a Liouville number
(although the partial quotients in its continued fraction expansion are unbounded). Kurt Mahler
showed in 1953 that π is also not a Liouville number. It is conjectured that all infinite continued
fractions with bounded terms that are not eventually periodic are transcendental.

Our aim will be to show that for every m ∈ N the number∑
n∈N

1

n2m

is transcendental. In other words, the Riemann zeta function ζ(s) evaluated at even integers is a
transcendental number. We will obtain this result by explicit computations.

3.3. Euler’s series. We shall show the following:

Proposition 3.19. One has ∑
n∈N

1

n2
=
π2

6
. (3.20)

This is a classical, famous and important result by Leonhard Euler from 1734. One of its key
interpretations is that it yields the first non-trivial value ζ(2) of Riemann’s zeta function.

Proof. The proof consists in two different evaluations of the double integral

I =

∫ 1

0

∫ 1

0

1

1− xy
dxdy.

For the first one, we expand 1
1−xy as a geometric series, decompose the summands as products, and

integrate effortlessly:

I =

∫ 1

0

∫ 1

0

∑
n≥0

(xy)ndxdy

=
∑
n≥0

∫ 1

0

∫ 1

0

(xy)ndxdy

=
∑
n≥0

1

n+ 1

1

n+ 1

=
∑
n∈N

1

n2
= ζ(2).

This evaluation also shows that the double integral (over a positive function with a pole at x = y = 1)
is finite. Note that the computation is also easy and straightforward if we read it backwards – thus
the evaluation of ζ(2) leads one to the double integral I.
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The second way to evaluate I comes from a change of coordinates: in the new coordinates given
by u := y+x

2
and v := y−x

2
the domain of integration is a square of side length 1

2

√
2, which we

get from the old domain by first rotating it by 45 degree and then shrinking it by a factor of
√

2.
Substitution of x = u− v and y = u+ v yields

1

1− xy
=

1

1− u2 + v2
.

To transform the integral, we have to replace dxdy by 2dudv, to compensate for the fact that our
coordinate transformation reduces areas by a constant factor of 2 (which is the Jacobi determinant
of the transformation). The new domain of integration, and the function to be integrated, are
symmetric with respect to the u-axis, so we just need to compute two times (another factor of 2
arises here!) the integral over the upper half domain, which we split into two parts in the most
natural way:

I = 4

∫ 1/2

0

(∫ u

0

dv

1− u2 + v2

)
du+ 4

∫ 1

1/2

(∫ 1−u

0

dv

1− u2 + v2

)
du.

Using ∫
dx

x2 + a2
=

1

a
arctan

x

a
+ C,

this becomes

I =4

∫ 1/2

0

1√
1− u2

arctan

(
u√

1− u2

)
du

+ 4

∫ 1

1/2

1√
1− u2

arctan

(
1− u√
1− u2

)
du.

Observe that taking

g(u) = arctan

(
u√

1− u2

)
, we have g′(u) =

1√
1− u2

,

while for

h(u) = arctan

(
1− u√
1− u2

)
, we have h′(u) = −1

2

1√
1− u2

.

Using

∫ b

a

f ′(x)f(x)dx =

[
1

2
f(x)2

]∣∣∣∣b
a

=
1

2

(
f(b)2 − f(a)2),
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we obtain that

I = 2

∫ 1/2

0

2g′(u)g(u)du− 4

∫ 1

1/2

2h′(u)h(u)du

= 2
[
g(u)2

]∣∣1/2
0
− 4
[
h(u)2

]∣∣1
1/2

= 2g(1/2)2 − 2g(0)2 − 4h(1)2 + 4h(1/2)2

= 2

(
π

6

)2

− 0− 0 + 4

(
π

6

)2

=
π2

6
,

and we are done. �

3.4. The Bernoulli numbers. The Bernoulli numbers arise naturally in the context of computing
the power sums

10 + 20 + . . .+ n0 = n,

11 + 21 + . . .+ n1 =
1

2
(n2 + n),

12 + 22 + . . .+ n2 =
1

6
(2n3 + 3n2 + n),

13 + 23 + . . .+ n3 =
1

4
(n4 + 2n3 + n2),

etc.

To study these, let n be a positive integer and let the k-th power sum up to n− 1 be

Sk(n) =
n−1∑
m=0

mk for k ∈ N.

Thus S0(n) = n while for k > 0 the term 0k is 0. (Having the sum start at 0 and stop at n − 1
neatens the ensuing calculation.) The power series having these sums as its coefficients is their
generating function,

S(n, t) =
∞∑
k=0

Sk(n)
tk

k!
.

Exercise 3.21. Show that

S(n, t) =
ent − 1

t

t

et − 1
.

The second term is independent of n. Its coefficients are by definition the Bernoulli numbers,
constants Bk that can be computed once and for all,

t

et − 1
=
∞∑
k=0

Bk
tk

k!
.
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Exercise 3.22. Show that the generating function rearranges to

S(n, t) =
∞∑
m=1

nm
tm−1

m!

∞∑
j=0

Bj
tj

j!

=
∞∑
k=0

(
1

k + 1

k∑
j=0

(
k + 1

j

)
Bjn

k+1−j
)
tk

k!
.

Thus, if we define the kth Bernoulli polynomial as

Bk(x) =
k∑
j=0

(
k

j

)
Bjx

k−j,

which again can be computed once and for all.

Exercise 3.23. Show that

Sk(n) =
1

k + 1

(
Bk+1(n)−Bk+1

)
.

The first few Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30 and so
the first few Bernoulli polynomials are

B0(x) = 1,

B1(x) = x− 1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x.

Exercise 3.24. Show for every k ∈ N that

B′k(x) = kBk−1(x),

assuming that B0(x) = 1, and ∫ 1

0

Bk(x)dx = 0 for any k ∈ N.

3.5. Weierstrass theorem for complex functions. We shall prove a result which guarantees
that any complex power series can be differentiated term-by-term within its disk of convergence.
The result will have other consequences as well.

Exercise 3.25. Let S be a subset of C. Consider a sequence of continuous functions on S,

ϕ1, ϕ2, . . . : S → C.

Suppose that the sequence converges uniformly on S to a limit function

ϕ : S → C.

Then ϕ is also continuous.

The other result to recall is that we can pass uniform limits through integrals.
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Exercise 3.26. Let Ω be a region in C and let a be any point of Ω. Suppose that a closed ball B
centered at a lies in Ω. Let γ = ∂B be the boundary circle of B, traversed once counterclockwise.
Suppose that a sequence of continuous functions

φ1, φ2, . . . : γ → C

converges uniformly on γ to a limit φ : γ → C. Then

lim
n→∞

∫
γ

φn(z)dz =

∫
γ

φ(z)dz.

Now we can state and prove our main result.

Theorem 3.27 (Weierstrass). Let Ω be a region in C. Consider a sequence of differentiable func-
tions on Ω,

ϕ1, ϕ2, . . . : Ω→ C.
Suppose that the sequence converges on Ω to a limit function

ϕ : Ω→ C.

and that the convergence is uniform on compact subsets of Ω. Then
(1) The limit function ϕ is differentiable.
(2) One has limn→∞ ϕ

′
n(z) = ϕ′(z) for every z ∈ Ω.

(3) This convergence is also uniform on compact subsets of Ω.

Proof. First, to show that the limit function ϕ is continuous, let z be any point of Ω. Some closed
ball B centered at z lies in Ω, and the convergence of (ϕn : n ∈ N) to ϕ is uniform on the compact set
B. The restriction of the limit function ϕ to B is therefore continuous, and so ϕ itself is continuous
at the interior point z. Since z is arbitrary, ϕ is continuous on Ω.

Next, to show that ϕ is differentiable, let γ = ∂B be the boundary circle of the closed ball B from
the previous paragraph, traversed once counterclockwise, and let z be any point inside γ. Consider
an auxiliary sequence of functions on γ, defined by

φn(ζ) =
ϕn(ζ)

ζ − z
, n ∈ N

with limit

φ(ζ) =
ϕ(ζ)

ζ − z
.

Since φn converges uniformly on γ to φ, we may exchange an integral and a limit,

ϕ(z) = lim
n→∞

ϕn(z)

= lim
n→∞

1

2πi

∫
γ

ϕn(ζ)

ζ − z
dζ

= lim
n→∞

1

2πi

∫
γ

φn(ζ)dζ

=
1

2πi

∫
γ

φ(ζ)dζ

=
1

2πi

∫
γ

ϕ(ζ)

ζ − z
dζ.
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This shows that the continuous function ϕ has a Cauchy integral representation, making it differ-
entiable.

Third, use the Cauchy integral representation of derivatives to argue similarly (with a modified
auxiliary sequence (φn : n ∈ N)) that the sequence (ϕ′n : n ∈ N) of derivatives converges to the
derivative ϕ′ of the limit function,

lim
n→∞

ϕ′n(z) = lim
n→∞

1

2πi

∫
γ

ϕn(ζ)

(ζ − z)2
dζ

=
1

2πi

∫
γ

ϕ(ζ)

(ζ − z)2
dζ

= ϕ′(z).

Finally, we need to argue that this convergence is uniform on compact subsets of Ω. In the special
case that the compact set is the closed ball B′ having half the radius of the open ball B, let c > 0
denote the half-radius, so that

|ζ − z| ≥ c, ζ ∈ γ, z ∈ B′.

It follows by Cauchy’s formula for the derivative and the usual estimation techniques that for all
z ∈ B′,

|ϕ′(z)− ϕ′n(z)| =
∣∣∣∣ 1

2πi

∫
γ

ϕ(ζ)− ϕn(ζ)

(ζ − z)2
dζ

∣∣∣∣
≤ 1

2π

∫
γ

|ϕ(ζ)− ϕn(ζ)|
c2

|dζ|

= C sup
ζ∈γ
|ϕ(ζ)− ϕn(ζ)|.

But ϕn converges to ϕ uniformly on the compact subset γ of Ω. So, given ε > 0, there exists a
starting index n0 ∈ N such that

n ≥ n0 =⇒ |ϕ′(z)− ϕ′n(z)| < ε for any z ∈ B′.

To complete the argument, let K be any compact set of the whole region Ω. About each point a of
K there is an open ball B = Ba. Let B′a be the ball about a of half the radius of Ba. These balls
give an open cover of K,

K =
⋃
a∈K

{a} ⊆
⋃
a∈K

B′a.

By compactness, K has a finite subcover,

K ⊆ B′a1 ∪ . . . ∪B
′
ak
.

Let Kj = K ∩ cl(B′aj) for j ∈ {1, . . . , k}. Then

K = K1 ∪ . . . ∪Kn,

and by the previous paragraph, the convergence of (ϕ′n : n ∈ N) to ϕ′ is uniform on each of
the finitely-many sets Kj. Consequently the convergence is uniform on K: Given ε > 0, the
corresponding global starting index n0 ∈ N is the maximum of finitely many local ones. This
completes the proof. �
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Example 3.28. As mentioned, the application of the Weierstrass theorem that we have in mind
here is that the functions ϕn are the partial sums of a power series,

ϕn(z) =
n∑
j=0

aj(z − c)j, n ∈ N ∪ {0}

while ϕ is the full power series,

ϕ(z) =
∞∑
j=0

aj(z − c)j.

In this case, the result is that any power series can be differentiated term by term within its disk
of convergence, and the resulting power series has the same disk of convergence.

Example 3.29. For another application of the Weierstrass theorem, consider the Riemann zeta
function

ζ(s) =
∞∑
n=1

1

ns
.

Since |1/ns| = 1/n<s, the sum converges absolutely on the right half plane Ω = {s ∈ C : <s > 1},
and the convergence is uniform on compacta. Thus ζ(s) is analytic on Ω.

3.6. Euler’s cotangent representation. We shall establish the following formula

π cotπz =
1

z
+
∞∑
n=1

( 1

z − n
+

1

z + n

)
=

1

z
+ 2z

∞∑
n=1

1

z2 − n2
.

The function π cotπz (for nonintegers z ∈ C) is analytic and Z-periodic. Near z = 0 we have

π cotπz ∼ π
1

πz
=

1

z
,

so that π cot πz is also meromorphic at 0, having a simple pole there with residue 1. By Z-perodicity,
the same holds at each integer n. Thus, a naive first attempt to imitate π cotπz by a series is∑

n∈Z

1

z − n
.

However, the nth term of this series is O(1/n), so that the series is not even summable. One can
fix this problem by modifying the terms to obtain the series

1

z
+
∑
n6=0

( 1

z − n
+

1

n

)
.

Now the nth term is
1

z − n
+

1

n
=

z

(z − n)n
= O(n−2),

and so the new series is summable. In fact, this calculation shows that the new series is absolutely
summable, so that its terms can be rearranaged. In particular, pairing the terms for n and −n gives

1

z − n
+

1

n
+

1

z + n
− 1

n
=

1

z − n
+

1

z + n
=

2z

z2 − n2
,

and these are the terms of the series that we began with, in both of its forms. So at least that series
converges absolutely for any noninteger z ∈ C.

All of this said, the series that we began with (in either of its forms) is not a Laurent series, and
so part of the task here is to show that it defines a meromorphic function at all. And even if it
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does, the preceding calculation has exposed a problem. The nth term-with-correction of the series,
evaluated at z +m (where m is an integer) rather than at z, is

1

z +m− n
− 1

n
.

This is not any term whatsoever of the series evaluated at z. The corrections required to make a
convergent series also make a series that is not obviously Z-periodic as a function of z, as it must
be to represent the cotangent.

To show that the sum is meromorphic we shall use Theorem 3.4. To apply Theorem 3.4 here, let
Ω = C \ Z, a region in C. Define

ϕn : Ω→ C, ϕn(z) =
1

z
+

n∑
j=1

( 1

z − j
+

1

z + j

)
, n ∈ N.

This is the sequence of partial sums of

ϕ : Ω→ C, ϕ(z) =
1

z
+
∞∑
j=1

( 1

z − j
+

1

z + j

)
.

Consider any z ∈ Ω. For all j >
√

2|z|, the reverse triangle inequality gives

|z2 − j2| ≥ j2 − |z|2 > j2 − j2/2 = j2/2,

and so ∣∣∣ 1

z2 − j2

∣∣∣ < 2

j2
.

This shows that the partial sums

ϕn(z) =
1

z
+ 2z

n∑
j=1

1

z2 − j2

converge absolutely. Consequently, they converge to the limit function

ϕ(z) =
1

z
+ 2z

∞∑
j=1

1

z2 − j2
.

We need to show that the convergence is uniform on compact subsets of Ω. Let K be such a subset,
and let ε > 0 be given. There is a uniform bound b > 0 on the absolute values |z| for all z ∈ K.
Also, there is a starting index n0 ∈ N such that for any n > n0,

∞∑
j=n+1

1

j2
< ε/(4b).

Consider any n such that n > n0 and also n >
√

2b. For such n and for all z ∈ K,

|ϕ(z)− ϕn(z)| =
∣∣∣2z ∞∑

j=n+1

1

z2 − j2

∣∣∣ ≤ 2b
∞∑

j=n+1

∣∣∣ 1

z2 − j2

∣∣∣ ≤ 2b
∞∑

j=n+1

2

j2
< ε.

This shows that the convergence of (ϕn : n ∈ N) on Ω is uniform on compact subsets.
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By the result, the limit function can be differentiated termwise. Now that we no longer need the
symbol n to index partial sums, we return to the more natural notation of using it as sum-index,

ϕ(z) =
1

z
+
∞∑
n=1

( 1

z − n
+

1

z + n

)
=

1

z
+ 2z

∞∑
n=1

1

z2 − n2
,

and

ϕ′(z) = −
∑
n∈Z

1

(z − n)2
.

The second series for ϕ shows that it is odd, and the series for ϕ′ shows that it is even. The
convergence of ϕ′ is again absolute, and so ϕ′ is Z-periodic by a calculation that rearranges terms,

ϕ′(z +m) = −
∑
n∈Z

1

(z +m− n)2
= −

∑
n∈Z

1

(z − n)2
.

It follows that (
ϕ(z + 1)− ϕ(z)

)′
= ϕ′(z + 1)− ϕ′(z) = 0,

so that
ϕ(z + 1)− ϕ(z) = c for some constant c.

To show that ϕ is Z-periodic, we need to show that c = 0. But in particular,

c = ϕ(1/2)− ϕ(−1/2) = 2ϕ(1/2) since ϕ is odd,

and so it suffices to show that ϕ(1/2) = 0. Inspect it,

ϕ(1/2) = 2 +
∞∑
n=1

1

1/4− n2
= 2−

∞∑
n=1

( 1

n− 1/2
− 1

n+ 1/2

)
.

The sum telescopes to 2, giving the desired result.
The argument so far shows that the function ϕ(z) − 1/z is also analytic at z = 0. Therefore ϕ

itself is meromorphic at 0, having a simple pole there with residue 1. By the Z-periodicity, the same
holds at each integer n. This matches the behavior of π cot πz. Thus the difference π cotπz − ϕ(z)
is entire. We want to show that it is the zero function.

The first step is to show that the difference is bounded, making it constant by Liouville’s theorem.
Since the difference is Z-periodic in the x-direction, it suffices to show that is bounded as |y| → ∞,
and for this it suffices to show that each of π cot πz and ϕ(z) is individually bounded as |y| → ∞.
Compute first that

π cot πz = πi
eπiz + e−πiz

eπiz − e−πiz
= πi

e2πiz + 1

e2πiz − 1
= πi+

2πi

e2πiz − 1
.

Also |e2πiz| = e−2πy, so limy→+∞ π cotπz = −πi and limy→−∞ π cotπz = πi. On the other hand,
suppose now that z = x + iy where 0 ≤ x < 1 and |y| > 1. Then we have the inequalities
|y| ≤ |z| ≤ |y|+ 1 and

|z2 − n2| = |x2 − y2 − n2 + 2ixy| ≥ y2 + n2 − x2 ≥ y2 + n2 − 1.

It follows that

|ϕ(z)| ≤ 1

|y|
+ 2(|y|+ 1)

∞∑
n=1

1

y2 + n2 − 1
.
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Let η = b|y|c. Then
∞∑
n=1

1

y2 + n2 − 1
=

∞∑
m=0

η∑
r=1

1

y2 + (mη + r)2 − 1
,

and for each m ≥ 0,
η∑
r=1

1

y2 + (mη + r)2 − 1
≤ η

η2 + (mη)2
≤ 1

η(1 +m2)
.

This shows that

|ϕ(z)| ≤ 1

|y|
+ 2
|y|+ 1

b|y|c

∞∑
m=0

1

1 +m2
,

and so ϕ(z) is bounded as |y| → ∞ as well.
Thus π cotπz − ϕ(z) is constant. To see that the constant is 0, set z = 1/2. From before,

ϕ(1/2) = 0. But also π cotπ/2 = 0, giving the result.

Example 3.30. As an application, we compare the power series expansions about z = 0 of the two
now-known-to-be-equal functions

zϕ(z) and π cot πz.

For the first expansion, compute that for |z| < 1,

zϕ(z) = 1 + 2z2

∞∑
n=1

1

z2 − n2

= 1− 2z2

∞∑
n=1

1

n2

1

1− z2/n2

= 1− 2z2

∞∑
n=1

1

n2

∞∑
k=0

( z
n

)2k

= 1− 2
∞∑
k=0

z2k+2

∞∑
n=1

1

n2k+2

= 1− 2
∞∑
k=1

ζ(2k)z2k.

That is, zϕ(z) is a generating function for the Riemann zeta function ζ(2k) at positive even values.
On the other hand, the second expansion is essentially a generating function for the Bernoulli
numbers. Again for |z| < 1,

πz cotπz = πiz +
2πiz

e2πiz − 1

= πiz +
∞∑
k=0

Bk

k!
(2πiz)k

= 1 +
∞∑
k=1

(2πi)2kB2k

(2k)!
z2k,
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since B2k+1 ≡ 0 for all k ∈ N. Comparing these two expansions we get Euler’s famous formula,

ζ(2k) = −1

2

(2πi)2kB2k

(2k)!
for all k ∈ N. (3.31)

In particular, this formula combines with the values B2 = 1/6, B4 = −1/30, B6 = 1/42 to give

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
,

and

ζ(8) =
π8

9450
, ζ(10) =

π10

93555
, ζ(12) =

691π12

638512875
.

Finally, we conclude that the formula (3.31) shows that ζ(2k) is transcendental for every k ∈ N.

4. Simple properties of Gamma function and their applications

This section is based on [3] and [7].

4.1. Definitions of Γ(z) and B(z, w). The following formula is valid:∫
Rn

e−|x|
2

dx = πn/2. (4.1)

This is an immediate consequence of the corresponding one-dimensional identity∫
R
e−x

2

dx =
√
π,

which is usually proved from its two-dimensional version by switching to polar coordinates:

I2 =

∫
R

∫
R
e−x

2

e−y
2

dx dy = 2π

∫ ∞
0

re−r
2

dr = π.

Definition 4.2. For a complex number z with <z > 0 define

Γ(z) =

∫ ∞
0

tz−1e−t dt.

Γ(z) is called the gamma function.

It follows from its definition that Γ(z) is analytic on the right half-plane <z > 0. Two fundamental
properties of the gamma function are that

Γ(z + 1) = zΓ(z) and Γ(n) = (n− 1)!,

where z is a complex number with positive real part and n ∈ Z+. Indeed, integration by parts
yields

Γ(z) =

∫ ∞
0

tz−1e−t dt =
tze−t

z

∣∣∣∣∞
0

+ z−1

∫ ∞
0

tze−t dt = z−1Γ(z + 1).

Since Γ(1) = 1, the property Γ(n) = (n − 1)! for n ∈ Z+ follows by induction. Another important
fact is that

Γ(1/2) =
√
π.

This follows easily from the identity

Γ(1/2) =

∫ ∞
0

t−1/2e−t dt = 2

∫ ∞
0

e−u
2

du =
√
π.
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Next we define the beta function. Fix z and w complex numbers with positive real parts. We define

B(z, w) =

∫ 1

0

tz−1(1− t)w−1 dt =

∫ 1

0

tw−1(1− t)z−1 dt.

We have the following relationship between the gamma and the beta functions:

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
,

when z and w have positive real parts.
The proof of this fact is as follows:

Γ(z + w)B(z, w) = Γ(z + w)

∫ 1

0

tw−1(1− t)z−1 dt

= Γ(z + w)

∫ ∞
0

uw−1(1 + u)−z−w du
[
t = u/(u+ 1)

]
=

∫ ∞
0

∫ ∞
0

uw−1(1 + u)−z−wvz+w−1e−v dv du

=

∫ ∞
0

∫ ∞
0

uw−1sz+w−1e−s(u+1) ds du
[
s = v/(u+ 1)

]
=

∫ ∞
0

sze−s
∫ ∞

0

(us)w−1e−su du ds

=

∫ ∞
0

sz−1e−sΓ(w) ds

= Γ(z)Γ(w).

4.2. Volume of the Unit Ball and Surface of the Unit Sphere. We denote by νn the volume
of the unit ball in Rn and by ωn−1 the surface area of the unit sphere Sn−1. We have the following:

ωn−1 =
2πn/2

Γ(n/2)

and

νn = ωn−1/n =
2πn/2

nΓ(n/2)
=

πn/2

Γ(n/2 + 1)
.

The easy proofs are based on the formula (4.1). We have

πn/2 =

∫
Rn

e−|x|
2

dx = ωn−1

∫ ∞
0

rn−1e−r
2

dr,

by switching to polar coordinates. Now change variables t = r2 to obtain that

πn/2 = ωn−1/2

∫ ∞
0

tn/2−1e−t dt = Γ(n/2)ωn−1/2.

This proves the formula for the surface area of the unit sphere in Rn.
To compute νn, write again using polar coordinates

νn = |B(0, 1)| =
∫
|x|≤1

dx =

∫
Sn−1

∫ 1

0

rn−1 dr dθ = ωn−1/n.

Here is another way to relate the volume to the surface area. Let B(0, R) be the ball in Rn of
radius R > 0 centered at the origin. Then the volume of the shell B(0, R+ h) \B(0, R) divided by
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h tends to the surface area of B(0, R) as h → 0. In other words, the derivative of the volume of
B(0, R) with respect to the radius R is equal to the surface area of B(0, R). Since the volume of
B(0, R) is νnRn, it follows that the surface area of B(0, R) is nνnRn−1. Taking R = 1, we deduce
ωn−1 = nνn.

4.3. Computation of Integrals Using Gamma Functions. Let k1, . . . , kn be nonnegative even
integers. The integral∫

Rn

xk11 · . . . · xknn e−|x|
2

dx1 . . . dxn =
n∏
j=1

∫
R
x
kj
j e
−x2j dxj =

n∏
j=1

Γ
(kj + 1

2

)
expressed in polar coordinates is equal to(∫

Sn−1

θk11 · . . . · θknn dθ
)∫ ∞

0

rk1+...+knrn−1e−r
2

dr,

where θ = (θ1, . . . , θn). This leads to the identity∫
Sn−1

θk11 · . . . · θknn dθ = 2Γ
(k1 + . . .+ kn + n

2

)−1
n∏
j=1

Γ
(kj + 1

2

)
.

Another classical integral that can be computed using gamma functions is the following:∫ π/2

0

(sinϕ)a(cosϕ)b dϕ =
Γ
(
a+1

2

)
Γ
(
b+1

2

)
2Γ
(
a+b+2

2

) ,

whenever a and b are complex numbers with <a > −1 and <b > −1.
Indeed, change variables u = sin2 ϕ; then du = 2 sinϕ cosϕdϕ, and the preceding integral becomes

1

2

∫ 1

0

u(a−1)/2(1− u)(b−1)/2 du =
1

2
B
(a+ 1

2
,
b+ 1

2

)
=

Γ
(
a+1

2

)
Γ
(
b+1

2

)
2Γ
(
a+b+2

2

) .

4.4. Meromorphic Extensions of B(z, w) and Γ(z). Using the identity Γ(z+1) = zΓ(z), we can
easily define a meromorphic extension of the gamma function on the whole complex plane starting
from its known values on the right half-plane. We give an explicit description of the meromorphic
extension of Γ(z) on the whole plane. First write

Γ(z) =

∫ 1

0

tz−1e−t dt+

∫ ∞
1

tz−1e−t dt

and observe that the second integral is an analytic function of z for all z ∈ C. Write the first
integral as ∫ 1

0

tz−1
{
e−t −

N∑
j=0

(−t)j

j!

}
dt+

N∑
j=0

(−1)j

(z + j) j!
.

The last integral converges when <z > −N − 1, since the expression inside the curly brackets is
O(tN+1) as t→ 0. It follows that the gamma function can be defined to be an analytic function on
<z > −N−1 except at the points z = −j, j = 0, 1, . . . , N , at which it has simple poles with residues
(−1)j

j!
. Since N was arbitrary, it follows that the gamma function has a meromorphic extension on

the whole plane.
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In view of the identity

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
,

the definition of B(z, w) can be extended to C×C. It follows that B(z, w) is a meromorphic function
in each argument.

4.5. Asymptotics of Γ(x) as x→∞. We now derive Stirling’s formula:

lim
x→∞

Γ(x+ 1)

(x
e
)x
√

2πx
= 1.

First change variables t = x+ sx
√

2/x to obtain

Γ(x+ 1) =

∫ ∞
0

e−ttx dt =
(x
e

)x√
2x

∫ ∞
−
√
x/2

(
1 + s

√
2/x
)x

e2s
√
x/2

ds.

Setting y =
√
x/2, we obtain

Γ(x+ 1)

(x
e
)x
√

2x
=

∫
R

((
1 + s

y

)y
es

)2y

χ(−y,∞)(s) ds.

To show that the last integral converges to
√
π as y →∞, we need the following:

(1) The fact that

lim
y→∞

((
1 + s

y

)y
es

)2y

= e−s
2

,

which follows easily by taking logarithms and applying L’Hôpital’s rule twice.
(2) The estimate, valid for y ≥ 1,((

1 + s
y

)y
es

)2y

≤

{
(1+s)2

es
, s ≥ 0,

e−s
2
, −y < s < 0,

which can be easily checked using calculus.
Using these facts, the Lebesgue dominated convergence theorem, the trivial fact that χ(−y,∞)(s)→ 1
as y →∞, and the identity (4.1), we obtain that

lim
x→∞

Γ(x+ 1)

(x
e
)x
√

2x
= lim

y→∞

∫
R

((
1 + s

y

)y
es

)2y

χ(−y,∞)(s) ds =

∫
R
e−s

2

ds =
√
π.

As a consequence of Stirling’s formula, for any t > 0, we obtain

lim
x→∞

Γ(x)

Γ(x+ t)
= 0.

4.6. Stirling’s formula: a more precise bounds. We shall prove Stirling’s formula by showing
the following result.

Theorem 4.3. For n = 1, 2, . . ., we have

n! =
√

2πnn+1/2e−nern (4.4)

where rn satisfies the double inequality
1

12n+ 1
< rn <

1

12n
. (4.5)
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The usual textbook proofs replace the first inequality in (4.5) by the weaker inequality

rn > 0

or

rn >
1

12n+ 6
.

Proof. Let

Sn = log(n!) =
n−1∑
p=1

log(p+ 1)

and write

log(p+ 1) = Ap + bp − εp, (4.6)

where

Ap =

∫ p+1

p

log x dx,

bp = [log(p+ 1)− log p]/2,

εp =

∫ p+1

p

log x dx− [log(p+ 1) + log p]/2.

The partition (4.6) of log(p+ 1), regarded as the area of a rectangle with base (p, p+ 1) and height
log(p+ 1), into a curvilinear area, a triangle, and a small sliver is suggested by the geometry of the
curve y = log x. Then

Sn =
n−1∑
p=1

(Ap + bp − εp) =

∫ n

1

log x dx+
1

2
log n−

n−1∑
p=1

εp.

Since
∫

log x dx = x log x− x we can write

Sn = (n+ 1/2) log n− n+ 1−
n−1∑
p=1

εp, (4.7)

where

εp =
2p+ 1

2
log
(p+ 1

p

)
− 1.

Using the well known series

log
(1 + x

1− x

)
= 2

∞∑
k=0

x2k+1

2k + 1

valid for |x| < 1, and setting x = (2p+ 1)−1, so that (1 + x)/(1− x) = (p+ 1)/p, we find that

εp =
∞∑
k=0

1

(2k + 3)(2p+ 1)2k+2
. (4.8)
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We can therefore bound εp above and below:

εp <
1

3(2p+ 1)2

∞∑
k=0

1

(2p+ 1)2k
=

1

12

(1

p
− 1

p+ 1

)
, (4.9)

εp >
1

3(2p+ 1)2

∞∑
k=0

1

[3(2p+ 1)2]k
=

1

3(2p+ 1)2

1

1− 1
3(2p+1)2

>
1

12

( 1

p+ 1/12
− 1

p+ 1 + 1/12

)
.

(4.10)

Now define

B =
∞∑
p=1

εp, rn =
∞∑
p=n

εp, (4.11)

where from (4.9) and (4.10) we have

1/13 < B < 1/12. (4.12)

Then we can write (4.7) in the form

Sn = (n+ 1/2) log n− n+ 1−B + rn,

or, setting C = e1−B, as
n! = Cnn+1/2e−nern ,

where rn is defined by (4.11), εp by (4.8), and from (4.9) and (4.10) we have

1/(12n+ 1) < rn < 1/(12n).

The constant C, known from (4.12) to lie between e11/12 and e12/13, may be shown by one of the
usual methods to have the value

√
2π. This completes the proof. �

4.7. Euler’s Limit Formula for the Gamma Function. For n a positive integer and <z > 0
we consider the functions

Γn(z) =

∫ n

0

(
1− t

n

)n
tz−1 dt.

We show that

Γn(z) =
n!nz

z(z + 1) · . . . · (z + n)

and we obtain Euler’s limit formula for the gamma function

lim
n→∞

Γn(z) = Γ(z).

We write Γ(z)− Γn(z) = I1(z) + I2(z) + I3(z), where

I1(z) =

∫ ∞
n

e−ttz−1 dt,

I2(z) =

∫ n

n/2

(
e−t −

(
1− t

n

)n)
tz−1 dt,

I3(z) =

∫ n/2

0

(
e−t −

(
1− t

n

)n)
tz−1 dt.



SELECTED TOPICS IN REAL AND COMPLEX ANALYSIS 45

Obviously I1(z) tends to zero as n→∞. For I2 and I3 we have that 0 ≤ t < n, and by the Taylor
expansion of the logarithm we obtain

log
(

1− t

n

)n
= n log

(
1− t

n

)
= −t− L,

where

L =
t2

n

∞∑
k=0

tk

(k + 2)nk
.

It follows that
0 ≤ e−t −

(
1− t

n

)n
= e−t − e−Le−t ≤ e−t,

and thus I2(z) tends to zero as n→∞. For I3 we have t/n ≤ 1/2, which implies that

L ≤ t2

n

∞∑
k=0

1

(k + 1)2k−1
=
t2

n
c.

Consequently, for t/n ≤ 1/2 we have

0 ≤ e−t −
(

1− t

n

)n
= e−t(1− e−L) ≤ e−tL ≤ e−t

ct2

n
.

Plugging this estimate into I3, we deduce that

|I3(z)| ≤ c

n
Γ(<z + 2),

which certainly tends to zero as n→∞.
Next, n integrations by parts give

Γn(z) =
( n−1∏
k=0

n− k
n(z + k)

)∫ n

0

tz+n−1 dt =
n!nz

z(z + 1) · . . . · (z + n)
.

This can be written as

1 = Γn(z)z exp
{
z
( n∑
k=1

k−1 − log n
)} n∏

k=1

(
1 +

z

k

)
e−z/k.

Taking limits as n→∞, we obtain an infinite product form of Euler’s limit formula,

1 = Γ(z)zeγz
∞∏
k=1

(
1 +

z

k

)
e−z/k,

where <z > 0 and γ is Euler’s constant

γ = lim
n→∞

( n∑
k=1

k−1 − log n
)
.

The infinite product converges uniformly on compact subsets of the complex plane that excludes
z = 0,−1,−2, . . ., and thus it represents a holomorphic function in this domain. This holomorphic
function multiplied by Γ(z)zeγz is equal to 1 on <z > 0 and by analytic continuation it must be
equal to 1 on C \ {0,−1,−2, . . .}. But Γ(z) has simple poles, while the infinite product vanishes to
order one, at the nonpositive integers. We conclude that Euler’s limit formula holds for all complex
numbers z; consequently, Γ(z) has no zeros and Γ(z)−1 is entire.
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An immediate consequence of Euler’s limit formula is the identity

1

|Γ(x+ iy)|2
=

1

|Γ(x)|2
∞∏
k=0

(
1 +

y2

(k + x)2

)
,

which holds for x and y real with x /∈ {0,−1, . . .}. As a consequence we have that

|Γ(x+ iy)| ≤ |Γ(x)|

and also that
1

|Γ(x+ iy)|
≤ 1

|Γ(x)|
eC(x)|y|2 ,

where

C(x) =
1

2

∞∑
k=0

(k + x)−2,

whenever y ∈ R and x ∈ R \ {0,−1, . . .}. Before we find a similar estimate for x ∈ {0,−1, . . .} we
provide a simpler expression for this estimate when x > 0.

When x > 0 we have

C(x) ≤ 1

2x2
+

1

2

∞∑
k=1

(k + x)−2 ≤ 1

2x2
+

1

2

∫ ∞
0

dt

(t+ x)2
=

1

2x2
+

1

2x

∫ ∞
1

dt

t2
=

1

2x2
+

1

2x
.

Thus we conclude that when x > 0 and y ∈ R we have
1

|Γ(x+ iy)|
≤ 1

|Γ(x)|
emax{x−2,x−1}|y|2 .

When x = 0 we write Γ(iy)iy = Γ(1 + iy) and use the preceding inequality to obtain

1

|Γ(iy)|
≤ |iy|
|Γ(1)|

e|y|
2

= |y|e|y|2

and more generally for x = −N ∈ {−1,−2, . . .} and y ∈ R we obtain by induction
1

|Γ(−N + iy)|
≤ |iy||1 + iy| · . . . · |N + iy|e|y|2 .

4.8. Reflection and Duplication Formulas for the Gamma Function. The reflection formula
relates the values of the gamma function of a complex number z and its reflection about the point
1/2 in the following way:

sin(πz)

π
=

1

Γ(z)

1

Γ(1− z)
.

The duplication formula relates the entire functions Γ(2z)−1 and Γ(z)−1 as follows:

1

Γ(z)Γ(z + 1/2)
=
π−1/222z−1

Γ(2z)
.

Both of these could be proved using Euler’s limit formula. The reflection formula also uses the
identity

∞∏
k=1

(
1− z2

k2

)
=

sin(πz)

πz
,
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while the duplication formula makes use of the fact that

lim
n→∞

(n!)222n+1

(2n)!n1/2
= 2
√
π.

These and other facts related to the gamma function can be found in Olver [5].

5. Laplace’s method and Stirling’s formula again

This section is based on [9].

Proposition 5.1. Suppose a and m are fixed, with a > 0 and m > −1. Then as s→∞∫ a

0

e−sxxm dx = s−m−1Γ(m+ 1) +O(e−cs), (5.2)

for some positive c.

Proof. The fact that m > −1 guarantees that the integral on the left-hand side exists. Then, we
write ∫ a

0

e−sxxm dx =

∫ ∞
0

e−sxxm dx−
∫ ∞
a

e−sxxm dx.

The first integral on the right-hand side can be seen to equal s−m−1Γ(m+ 1), if we make the change
of variables x 7→ x/s. For the second integral we note that∫ ∞

a

e−sxxm dx = e−cs
∫ ∞
a

e−s(x−c)xm dx = O(e−cs), (5.3)

as long as c < a, and so the proposition is proved. �

For later purposes it is interesting to point out that under certain restricted circumstances, the
gist of the conclusion in Proposition 5.1 extends to the complex half-plane <s ≥ 0.

Proposition 5.4. Suppose a and m are fixed, with a > 0 and −1 < m < 0. Then as |s| → ∞ with
<s ≥ 0, ∫ a

0

e−sxxm dx = s−m−1Γ(m+ 1) +O(1/|s|).

(Here s−m−1 is the branch of that function that is positive for s > 0.)

Proof. We begin by showing that when <s ≥ 0, s 6= 0,∫ ∞
0

e−sxxm dx = lim
N→∞

∫ N

0

e−sxxm dx

exists and equals s−m−1Γ(m+ 1). If N is large, we first write∫ N

0

e−sxxm dx =

∫ a

0

e−sxxm dx+

∫ N

a

e−sxxm dx.

Since m > −1, the first integral on the right-hand side defines an analytic function everywhere. For
the second integral, we note that −s−1∂x(e

−sx) = e−sx, so an integration by parts gives∫ N

a

e−sxxm dx =
m

s

∫ N

a

e−sxxm−1 dx− e−sx

s
xm
∣∣∣N
a
. (5.5)

This identity, together with the convergence of the integral
∫∞
a
xm−1 dx, shows that

∫∞
a
e−sxxm dx

defines an analytic function on <s > 0 that is continuous on <s ≥ 0, s 6= 0. Thus
∫∞

0
e−sxxm dx is
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analytic on the half-plane <s > 0 and continuous on <s ≥ 0, s 6= 0. Since it equals s−m−1Γ(m+ 1)
when s is positive, we deduce that

∫∞
0
e−sxxm dx = s−m−1Γ(m+ 1) when <s ≥ 0, s 6= 0.

However, we now have∫ a

0

e−sxxm dx =

∫ ∞
0

e−sxxm dx−
∫ ∞
a

e−sxxm dx.

It is clear from (5.5), and from the fact that m < 0, that if we let N → ∞, then
∫∞
a
e−sxxm dx =

O(1/|s|). The proposition is therefore proved. �

Note. If one wants to obtain a better error term in Proposition 5.4, or for that matter extend
the range of m, then one needs to mitigate the effect of the contribution of the end-point x = a.
This can be done by introducing suitable smooth cut-offs.

5.1. Laplace’s method. We have already mentioned that when Φ is real-valued, the main con-
tribution to

∫ b
a
e−sΦ(x) dx as s → ∞ comes from the point where Φ takes its minimum value. A

situation where this minimum is attained at one of the end-points, a or b, was considered in Propo-
sition 5.1. We now turn to the important case when the minimum is achieved in the interior of
[a, b].

Consider ∫ b

a

e−sΦ(x)ψ(x) dx

where the phase Φ is real-valued, and both it and the amplitude ψ are assumed for simplicity to be
indefinitely differentiable. Our hypothesis regarding the minimum of Φ is that there is an x0 ∈ (a, b)
so that Φ′(x0) = 0, but Φ′′(x0) > 0 throughout [a, b].

Proposition 5.6. Under the above assumptions, with s > 0 and s→∞,∫ b

a

e−sΦ(x)ψ(x) dx = e−sΦ(x0)
[ A
s1/2

+O(s−1)
]
, (5.7)

where
A =

√
2π

ψ(x0)

(Φ′′(x0))1/2
.

Proof. By replacing Φ(x) by Φ(x) − Φ(x0) we may assume that Φ(x0) = 0. Since Φ′(x0), we note
that

Φ(x)

(x− x0)2
=

Φ′′(x0)

2
ϕ(x),

where ϕ is smooth, and ϕ(x) = 1 + O(x − x0) as x → x0. We can therefore make the smooth
change of variables x 7→ y = (x − x0)(ϕ(x))1/2 in a small neighborhood of x = x0, and observe
that dy/dx|x0 = 1, and thus dx/dy = 1 + O(y) as y → 0. Moreover, we have ψ(x) = ψ̃(y) with
ψ̃(y) = ψ(x0) + O(y) as y → 0. Hence if [a′, b′] is a sufficiently small interval containing x0 in its
interior, by making the indicated change of variables we obtain∫ b′

a′
e−sΦ(x)ψ(x) dx = ψ(x0)

∫ β

α

e−sΦ
′′(x0)y2/2 dy +O

(∫ β

α

e−sΦ
′′(x0)y2/2|y| dy

)
, (5.8)

where α < 0 < β. We now make the further change of variables y2 = X, dy = 1
2
X−1/2dX, and we

see by (5.2) that the first integral on the right-hand side in (5.8) is∫ a0

0

e−sΦ
′′(x0)X/2X−1/2 dX +O(e−δs) = s−1/2

( 2π

Φ′′(x0)

)1/2

+O(e−δs),
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for some δ > 0. By the same argument, the second integral is O(1/s). What remains are the
integrals of e−sΦ(x)ψ(x) over [a, a′] and [b′, b]; but these integrals decay exponentially as s→∞, since
Φ(x) ≥ c > 0 in these two sub-intervals. Altogether, this establishes (5.7) and the proposition. �

It is important to realize that the asymptotic relation (5.7) extends to all complex s with <s ≥ 0.
The proof, however, requires a somewhat different argument: here we must take into account the
oscillations of e−sΦ(x) when |s| is large but <s is small, and this is achieved by a simple integration
by parts.

Proposition 5.9. With the same assumptions on Φ and ψ, the relation (5.7) continues to hold if
|s| → ∞ with <s ≥ 0.

Proof. We proceed as before to the equation (5.8), and obtain the appropriate asymptotic for the
first term, by virtue of Proposition 5.4, with m = −1/2. To deal with the rest we start with an
observation. If Ψ and ψ are given on an interval [a, b], are indefinitely differentiable, and Ψ(x) ≥ 0,
while |Ψ′(x)| ≥ c > 0, then if <s ≥ 0,∫ b

a

e−sΨ(x)ψ(x) dx = O(|s|−1) as |s| → ∞. (5.10)

Indeed, the integral equals

−s−1

∫ b

a

∂x
(
e−sΨ(x)

) ψ(x)

Ψ′(x)
dx,

which by integration by parts gives

s−1

∫ b

a

e−sΨ(x)∂x

( ψ(x)

Ψ′(x)

)
dx− s−1

[
e−sΨ(x) ψ(x)

Ψ′(x)

]b
a
.

The assertion (5.10) follows immediately since |e−sΨ(x)| ≤ 1, when <s ≥ 0. This allows us to deal
with the integrals of e−sΦ(x)ψ(x) in the complementary intervals [a, a′] and [b′, b], because in each,
|Φ′(x)| ≥ c > 0, since Φ′(x0) = 0 and Φ′′(x) ≥ c1 > 0.

Finally, for the second term on the right-hand side of (5.8) we observe that it is actually of the
form ∫ β

α

e−sΦ
′′(x0)y2/2yη(y) dy,

where η(y) is differentiable. Then we can again estimate this term by integration by parts, once we
write it as

− 1

sΦ′′(x0)

∫ β

α

∂y

(
e−sΦ

′′(x0)y2/2
)
η(y) dy,

obtaining the bound O(|s|−1). �

The special case of Proposition 5.9 when s is purely imaginary, s = it, t→ ±∞, is often treated
separately; the argument in this situation is usually referred to as the method of stationary phase.
The points x0 for which Φ′(x0) = 0 are called the critical points.

5.2. Stirling’s formula in the complex domain. Our application will be to the asymptotic
behavior of the gamma function Γ, given by Stirling’s formula. This formula will be valid in any
sector of the complex plane that omits the negative real axis. For any δ > 0 we set Sδ = {s :
| arg s| ≤ π−δ}, and denote by log s the principal branch of the logarithm that is given in the plane
slit along the negative real axis.
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Theorem 5.11. If |s| → ∞ with s ∈ Sδ, then

Γ(s) = es log se−s
√

2π

s1/2

(
1 +O(|s|−1/2)

)
. (5.12)

Remark 5.13. With a little extra effort one can improve the error term to O(1/|s|), and in fact
obtain a complete asymptotic expansion in powers of 1/s. Also, we note that (5.12) implies Γ(s) ∼√

2πss−1/2e−s, which is how Stirling’s formula is often stated.

Proof. To prove the theorem we first establish (5.12) in the right half-plane. We shall show that
the formula holds whenever <s > 0, and in addition that the error term is uniform on the closed
half-plane, once we omit a neighborhood of the origin (say |s| < 1). To see this, start with s > 0,
and write

Γ(s) =

∫ ∞
0

e−xxs
dx

x
=

∫ ∞
0

e−x+s log xdx

x
.

Upon making the change of variables x 7→ sx, the above equals∫ ∞
0

e−sx+s log sxdx

x
= es log se−s

∫ ∞
0

e−sΦ(x)dx

x
,

where Φ(x) = x− 1− log x. By analytic continuation this identity continues to hold, and we have
when <s > 0,

Γ(s) = es log se−sI(s)

with
I(s) =

∫ ∞
0

e−sΦ(x)dx

x
.

It now suffices to see that

I(s) =

√
2π

s1/2
+O(|s|−1) for <s > 0. (5.14)

Observe first that Φ(1) = Φ′(1) = 0, Φ′′(x) = x−2 > 0 whenever 0 < x < ∞, and Φ′′(1) = 1. Thus
Φ is convex, attains its minimum at x = 1, and is positive.

We apply the complex version of the Laplace method, Proposition 5.9, in this situation. Here
the critical point is x0 = 1 and ψ(x) = 1/x. We choose for convenience the interval [a, b] to be
[1/2, 2]. Then for

∫ b
a
e−sΦ(x)ψ(x) dx we get the asymptotic (5.14). It remains to bound the error

terms, those corresponding to integration over [0, 1/2], and [2,∞). Here the device of integration
by parts, which has served us so well, can be applied again. Indeed, since Φ′(x) = 1− 1/x, we have∫ 1/2

ε

e−sΦ(x)dx

x
= s−1

∫ 1/2

ε

∂x

(
e−sΦ(x)

) dx

Φ′(x)x

= −s−1
[e−sΦ(x)

x− 1

]1/2

ε
− s−1

∫ 1/2

ε

e−sΦ(x) dx

(x− 1)2
.

Noting that Φ(ε)→ +∞ as ε→ 0, and |e−sΦ(x)| ≤ 1, we find in the limit that∫ 1/2

0

e−sΦ(x)dx

x
= 2s−1e−sΦ(1/2) − s−1

∫ 1/2

0

e−sΦ(x) dx

(x− 1)2
.

Thus the left-hand side is O(|s|−1) in the half-plane <s ≥ 0.
The integral

∫∞
2
e−sΦ(x) dx

x
is treated analogously, once we note that

∫∞
2

(x− 1)−2 dx converges.
Since these estimates are uniform, (5.14) and thus (5.12) are proved for <s ≥ 0, |s| → ∞.
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To pass from <s ≥ 0 to <s ≤ 0, s ∈ Sδ, we record the following fact about the principal branch
of log s: whenever <s ≥ 0, s = σ + it, t 6= 0, then

log(−s) =

{
log s− iπ, t > 0,

log s+ iπ, t < 0.

Hence if G(s) = es log se−s, <s ≥ 0, t 6= 0, then

G(−s)−1 =

{
es log se−se−siπ, t > 0,

es log se−sesiπ, t < 0.
(5.15)

Next,

Γ(s)Γ(−s) =
π

−s sin πs
, (5.16)

which follows from the fact that Γ(s)Γ(1−s) = π/ sin πs, and Γ(1−s) = −sΓ(−s). The combination
of (5.15) and (5.16), together with the fact that for large s,

(
1+O(|s|−1/2)

)−1
= 1+O(|s|−1/2), allows

us then to extend (5.12) to the whole sector Sδ, thereby completing the proof of the theorem. �
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