Conley Index
Computational Homology
Computational Dynamics
Mathematical
Biology
Computer Graphics
Home page
|
The Conley index is a
topological generalization of Morse theory.
-
Survey Articles
- K. Mischaikow and M.
Mrozek , Conley
Index Theory. (The final version can be found in Handbook of Dynamical Systems II: Towards
Applications, (B. Fiedler, ed.) North-Holland, 2002.
- K. Mischaikow, The
Conley Index Theory: A Brief Introduction . (The final
version can be found in Conley Index Theory, Banach Center
Publications, 47, 1999.)
- L. Arnold, C. Jones, K. Mischaikow, and G. Raugel, Dynamical Systems, Lecture Notes in
Mathematics 1609 (R. Johnson
ed.), Springer, 1995.
- The structure of isolated invariant sets and the Conley
Index, Contemporary Mathematics (ed. C. McCord), 152(1993), 269-290.
-
Structure of Invariant Sets
- Maria
C. Carbinatto, Jarek
Kwapisz, and K.
Mischaikow, Horseshoes
and
the Conley Index Spectrum (this is an update of the October 7,
1996 version)
- C. McCord and K. Mischaikow, On the global dynamics of
attractors for scalar delay equations, Journal AMS 9(4)(1996), 1095-1133.
- C. McCord, M. Mrozek, and K. Mischaikow, Zeta
functions, periodic trajectories, and the Conley index, J. Diff. Eqns. 121(2)(1995), 258-292.
- M. Mrozek, and K. Mischaikow, Isolating
neighborhoods and chaos, Japan J.
Industrial & Applied Math., 12(2)(1995)
205-236.
- C. McCord, K. Mischaikow, and M. Mrozek, Zeta
functions, periodic trajectories, and the Conley index, J. Diff. Eqns. 121(2)(1995), 258-292.
-
Applications
- S. Day,
O.
Junge, and K.
Mischaikow, A
Rigorous
Numerical Method for the Global Analysis of Infinite
Dimensional Discrete Dynamical Systems (To appear in SIAM
Dynamical Systems).
- K. Mischaikow, M.
Mrozek , and A.
Szymczak , Chaos in
the Lorenz equations: A computer assisted proof. Part III: Classical
Case Parameter Values
- K. Mischaikow and M.
Mrozek , Chaos
in the Lorenz equations: A computer assisted proof. Part II: Details (The
final
version can be found in Mathematics of Computation, 67
(1998) 1023-1046)
- T.
Gedeon and K. Mischaikow, Structure of the global
attractor of cyclic feedback systems, J. Dyn. & Diff. Eq.,
7(1)(1995), 141-190.
- T.
Gedeon and K. Mischaikow, Dynamics of cyclic
feedback systems, Resenhas IME-USP, 1 (1994), 495-515
- Global asymptotic dynamics of gradient-like bistable
equations, SIAM J. Math. Anal.,
26(5)(1995),
1199-1224.
- K. Mischaikow and Y. Morita, Dynamics on the global
attractor of a gradient flow arising from the Ginzburg-Landau equation,
Japan J. of Indust. & Appl. Math., 11(1994), 185-202.
- K. Mischaikow and M.
Mrozek, Chaos in the Lorenz equations: A computer-assisted proof, Bulletin AMS, 32(1)(1995), 66-72.
-
Connection Matrices and Transition Matrices
- H.
Kokubu, K. Mischaikow, and H. Oka, Directional
Transition
Matrix. (The final version can be found in Conley
Index Theory, Banach Center Publications, 47, 1999.)
- K. Mischaikow and R. Franzosa, Algebraic transition
matrices in the Conley Index theory, Trans.
AMS, 350(3) (1998),
889-912.
- C. McCord and K. Mischaikow, On the global dynamics of
attractors for scalar delay equations, Journal AMS 9(4) (1996), 1095-1133.
- C. McCord and K. Mischaikow, Equivalence of
topological and singular transition matrices in the Conley Index
theory, Michigan Math. J. 42
(1995), 387-414.
- C. McCord and K. Mischaikow, Connected simple
systems, transition matrices, and heteroclinic bifurcations, Trans. AMS 333(1) (1992), 397-422.
- K. Mischaikow and R. Franzosa, The connection matrix
theory for semiflows on (not necessarily locally compact) metric
spaces, J. Diff. Eqns., 71(2) (1988), 270-287.
- Existence of generalized homoclinic orbits for one
parameter families of flows, Proc.
Amer. Math. Soc., 103(1)(1988),
59-68.
-
Applications
- Hiroshi
Kokubu, K. Mischaikow, Yasumasa Nishiura,
Hiroe Oka,
and
Takeshi Takaishi, Connecting
orbit
structure of monotone solutions in the shadow system (the
final version can be found in JDE,
140 (1997)
309-364).
- H. Kokubu, K. Mischaikow, H. Oka, Existence of
infinitely many connecting orbits in a singularly perturbed ordinary
differential equation, Nonlinearity
9 (1996),
1263-1280.
- T.
Gedeon and K. Mischaikow, Structure of the global
attractor of cyclic feedback systems,
J. Dyn. & Diff. Eq., 7(1)(1995),
141-190.
- Global asymptotic dynamics of gradient-like bistable
equations, SIAM J. Math. Anal.,
26(5) (1995),
1199-1224.
- K. Mischaikow and J. Reineck, Travelling waves in
predator-prey systems, SIAM J. Math.
Anal., 24 (1993),
1179-1214.
- V. Hutson and K. Mischaikow, Travelling waves for
mutualist species, SIAM J. Math.
Anal., 24 (1993),
987-1008.
- B. Fiedler and K. Mischaikow, Dynamics of bifurcations
for variational problems with O(3) equivariance: A Conley index
approach, Arch. Rat. Mech. Anal.
119 (1992),
145-196.
- H. Hattori and K. Mischaikow, A dynamical system
approach to a phase transition problem, J. Diff. Eqns., 94 (2)(1991), 340-378.
- H. Hattori and K. Mischaikow, On the existence of
intermediate magnetohydrodynamic shock waves, J. of Dyn. & Diff. Eqns., 2 (2)(1990), 163-175.
-
Singular Perturbations
-
Applications
- M.
Gameiro
, T.
Gedeon
, W. Kalies, H. Kokubu, K.
Mischaikow, and H. Oka, Topological
Horseshoes
of Travelling Waves for a Fast-Slow Predator-Prey System
(submitted).
- T.
Gedeon
, H. Kokubu, K.
Mischaikow, and H. Oka, Chaotic
solutions
in slowly varying perturbations of Hamiltonian systems with
applications to shallow water sloshing (The final version can be
found in J. Dynamics and
Differential Equations, 14,
2002).
- V. Hutson and K. Mischaikow, Periodic
Travelling
Waves . (The final version can be found in Conley
Index Theory, Banach Center Publications, 47, 1999.)
- V. Hutson and K. Mischaikow, Singular limits for
travelling waves for a pair of equations, Proc. Royal Society Edinburgh, 126 (1996), 399-411.
|