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Vector field design on surfaces is necessary for many graphics applications: example-based
texture synthesis, non-photorealistic rendering, and fluid simulation. For these applications, sin-
gularities contained in the input vector field often cause visual artifacts. In this paper, we present
a vector field design system that allows a user to create a wide variety of vector fields with con-
trol over vector field topology, such as the number and location of the singularities. Our system
combines basis vector fields to make an initial vector field that meets the user specifications.

The initial vector field often contains unwanted singularities. Such singularities cannot always
be eliminated, due to the Poincaré-Hopf index theorem. To reduce the visual artifacts caused by
these singularities, our system allows a user to move a singularity to a more favorable location or to
cancel a pair of singularities. These operations provide topological guarantees for the vector field
in that they only affect the user-specified singularities. We provide efficient implementations of
these operations based on Conley index theory. Our system also provides other editing operations
so that the user may change the topological and geometric characteristics of the vector field.

To create continuous vector fields on curved surfaces represented as meshes, we make use of
the ideas of geodesic polar maps and parallel transport to interpolate vector values defined at the
vertices of the mesh. We also use geodesic polar maps and parallel transport to create basis vector
fields on surfaces that meet the user specifications. These techniques allow our vector field design
system to work for both planar domains and curved surfaces.

We demonstrate our vector field design system for several applications: example-based texture
synthesis, painterly rendering of images, and pencil sketch illustrations of smooth surfaces.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Geometric algorithms, lan-
guages, and systems

General Terms: Algorithms

Additional Key Words and Phrases: Vector Field Design, Topology, Surfaces, Computational
Geometry

1. INTRODUCTION

Many graphics applications require an input vector field. For instance, example-based texture synthesis makes use
of a vector field to define local texture orientation and scale [Praun et al. 2000; Turk 2001; Wei and Levoy 2001].
In non-photorealistic rendering, vector fields are used to guide the orientation of brush strokes [Hertzmann 1998] and
hatches [Hertzmann and Zorin 2000]. In fluid simulation, the external force is a vector field which need not correspond
to any physical phenomenon and can exist on synthetic 3D surfaces [Stam 2003]. A vector field design system enables
these applications to achieve many different visual effects by using different input vector fields. It can also be used to
create vector fields for testing the efficiency and correctness of a particular vector field visualization technique [van
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Fig. 1. This figure shows various vector fields created on surfaces using our vector field design system. The vector field shown in the right was used
to guide texture synthesis shown in Figure 22 (upper-right).

Wijk 2002; 2003].
Vector field design refers to creating a continuous vector field on a 3D surface based on user specifications or

application-dependent requirements. It is different from vector field simplification, which is used to reduce the com-
plexity of large and/or noisy datasets while maintaining their major features. In vector field design, adding and remov-
ing features may be required.

There are several challenges to the problem of vector field design. First, the system should enable the user to create
a wide variety of vector fields with relatively little effort. Most existing vector field design systems generate some
sub-classes of vector fields, such as gradient and incompressible vector fields. This limits their potential applications.
Second, the user needs to have control over vector field topology, such as the number and location of the singularities.
As was pointed out in [Praun et al. 2000; Hertzmann and Zorin 2000], this is necessary for applications such as
example-based texture synthesis and non-photorealistic rendering, in which unwanted singularities often cause visual
artifacts. Figure 2 illustrates this with an example from texture synthesis, in which a sink (red dot) in the middle of the
bunny’s tail (left) causes the synthesis pattern to break up (right).

A vector field system should work for both planar domains and 3D surfaces. In Computer Graphics, 3D surfaces are
often represented as meshes, with vertices, edges, and triangles. Surface normal and tangent planes are discontinuous
at the vertices and across the edges, and the definition of vector field continuity from smooth manifolds does not
apply. Yet, the need for control over vector field topology requires continuous vector fields, for which we can perform
particle tracing following the vector field in a continuous and consistent manner. For this reason, we must come
up a definition for vector field continuity on mesh surfaces. In addition, we need a vector field representation that
guarantees vector field continuity and supports fast and efficient computation of vector field topology. Unfortunately,
the popular piecewise linear representation [Tricoche et al. 2001] produces continuous vector fieldsonly when the
mesh represents a planar domain. For curved surfaces, Stam [2003] uses subdivision surfaces to ensure the vector field
continuity. However, it is difficult to extract and control vector field topology with this representation because of its
complexity. Also, subdivision surfaces often incur higher computational costs than polygonal meshes.

In this paper, we present a vector field design system for surfaces. This system employs a three-stage pipeline:
initialization, analysis, and editing. In the initialization stage, the user can quickly create a vector field by using basis
vector fields. Next, the system performs geometric and topological analysis on the vector field and provides visual
feedback to the user. In the third stage, the user makes controlled editing operations to the current vector field, such as
moving a singularity (singularity movement) or cancelling a pair of singularities (singularity pair cancellation). This
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Fig. 2. This figure highlights the need for control over vector field topology in texture synthesis. The input vector field contains a singularity at the
center of the bunny’s tail (left), and it causes the synthesis patterns to break up.

process of iterative analysis and editing is repeated until the user is satisfied with the result.
Our system enables the user to create a wide variety of vector fields (curl-free, divergence-free, and generic) by

using basis vector fields of different kinds. It also provides the user with control over vector field topology, such as
the number and location of singularities. We provide efficient algorithms for both singularity pair cancellation and
singularity movement based on ideas from Conley index theory, which is more general and powerful than the popular
Poincaŕe index. To enable these operations to work for generic vector fields as opposed to only gradient vector fields,
we useflow rotationsand reflectionsto handle the numerical instabilities associated with regions of high curl and
regions near a saddle.

To allow our system to work on 3D surfaces, we present a novel piecewise interpolation scheme for representing
vector fields on meshes. This representation guarantees the creation of continuous vector fields based on vector values
defined at the vertices, and it supports efficient analysis and editing of surface vector fields. Also, we will describe a
new way of building basis vector fields on surfaces from user specifications in the initialization stage. The ideas for
both the vector field representation and building surface basis vector fields are based on the concepts ofgeodesic polar
mapsandparallel transportfrom classical differential geometry.

Figure 1 shows some vector fields created using our vector field system. Our vector field interpolation scheme
supports efficient vector field analysis, including topological skeleton extraction. The dots in this figure correspond to
the singularities in the vector fields, and the colored curves indicate their connectivity.

The remainder of the paper is organized as follows. We first review the relevant background on vector fields in
Section 2. Then, in Section 3 we review existing vector field design systems and vector field simplification techniques.
We present our vector field design system for planar domains in Section 4 and 5, and our system for 3D mesh surfaces
in Section 6. Section 7 provides some results of applying our vector field design system to various graphics appli-
cations, such as painterly rendering, pencil sketches of surfaces, and texture synthesis. Finally, we summarize our
contributions and discuss some possible future work in Section 8.

2. BACKGROUND ON VECTOR FIELDS

In this section, we review some basic facts about vector fields. Avector fieldV for a manifold surfaceS is a smooth
vector-valued function that associates to every pointp ∈ S a tangent vectorV(p). A vector field defines a system of
differential equations:

dp
dt

= V(p). (1)
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Fig. 3. This figure illustrates three vector fields that are curl-free (left), divergence-free (right), and neither (middle). Singularities are depicted as
colored dots and principle directions for saddles are drawn as crosses. Furthermore, incoming separatrices for saddles are shown in green while
outgoing separatrices are shown in red. The vector field in the middle contains a periodic orbit that separates the flow inside from the flow outside.
The visualization technique is based on van Wijk [2002].

With appropriate restrictions onV, for each pointp0 ∈ S, there exists a solutionp : R→ S with the property that
p(0) = p0 ([Hale and Kocak 1991; Hirsch and Smale 1974]). Because we will be interested in studying multiple
solutions simultaneously, it is useful to introduce the notion of theflow induced byV that is a continuous function
ϕ : R×S→ S with the property thatϕ(t,p0) = p(t). The set{p(t) | t ∈ R} = ϕ(R,p0) is called thetrajectory
throughp0. Uniqueness of solutions to ordinary differential equations guarantees that the set of trajectories forms an
equivalence relationship onS. In particular, ifq0 belongs to the trajectory ofp0, thenp0 belongs to the trajectory ofq0.
This implies thatS can be decomposed into the set of all trajectories. Some trajectories are of particular significance,
such assingularities.

A singularityp0 ∈ S is a point whereV = 0. Observe that the trajectory through a singularity consists of a single
point. For many of our calculations we will want to use a singularity classification based on thelocal linearizationof
the vector field. For simplicity, letV be a vector field defined for some planar domainD ⊂ R2 = {(x,y) | x,y∈ R}
such thatV(x,y) =

(
F(x,y) G(x,y)

)
. The local linearization at a pointp0 is: V∗(p) =V(p0)+DV(p0)(p−p0), where

DV =

(
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
is theJacobianof V. A singularityp0 is linear if DV(p0) has a full-rank. For the remainder of this

discussion we will assume thatp0 is a linear singularity. Results from linear algebra tell us that the two eigenvalues
are either both real numbers or a pair of conjugate complex numbers. In the first case, a singularity is asourceif both
(real) eigenvalues are positive, asink if both are negative, or asaddleif one is positive and the other is negative. On
the other hand, a linear singularity with a pair of conjugate complex eigenvalues is either acenterif the real part of
both eigenvalues is zero, or afocusotherwise.

Other trajectories of particular importance areseparatricesandperiodic orbits. A separatrix is a trajectory for which
the limit ast →∞ or t →−∞ of the solution functionp(t) is a saddle. For planar vector fields, thevector field topology
is determined by the set of singularities, separatrices, and periodic orbits. Figure 3 illustrates these special trajectories
with three vector fields. Singularities are illustrated as colored dots: sources (green), sinks (red), centers (cyan or
magenta depending on the orientations), and saddles (yellow). Furthermore, incoming and outgoing separatrices are
colored in green and red, respectively. The vector field in the middle contains a periodic orbit.

Two usefulanalyticcharacterizations of a vector field are its curl and divergence. Divergence measures the differ-
ence between the amount of flow leaving and approaching the measurement point. For instance, a source has a positive
divergence and a sink has a negative one. Curl measures the amount of flow that circles around the measurement point.
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The distributions of curl and divergence in the domain can help us understand the geometric structure of the trajecto-
ries. The two extreme cases arecurl-freevector fields in which case the curl is zero everywhere, anddivergence-free
vector fields in which case the divergence is zero everywhere. It should be noted that a typical vector field is neither
curl-free nor divergence-free. Figure 3 shows three vector fields of different analytical behaviors. The vector field
shown in the left is curl-free. In this case the typical singularities are sources, sinks, and saddles. Furthermore, the
separatrices divide the domain into a number of combinatorial quadrilaterals calledbasins. The boundary of each
basin consists of a source, a sink, and two saddles in between them. Inside each basin, all the trajectories leave the
same source and approach the same sink. The vector field in the right is divergence-free, whose typical singularities
are centers and saddles. The separatrices divide the domain into a number of bounded regions. Inside each region is
a family of periodic orbits that circle around the same center. A generic vector field is shown in the middle, which is
neither curl-free nor divergence-free and may contain periodic orbits.

2.1 Topological Descriptions of Vector Fields

The vector field design problem requires that the user be able to control the trajectories of a vector field both locally
and globally. To do this requires the introduction of a topological characterization of vector fields. In this section, we
review a well-known topological descriptor, thePoincaŕe index, and a more general characteristic, theConley index.

A singularity p0 is isolatedif there exists an open neighborhoodU of p0 with the property thatp0 is the unique
singularity in the interior ofU . An isolated singularityp0 can be characterized by itsPoincaŕe index, which is defined
in terms of thewinding numberfor theGauss map.

DEFINITION 2.1. LetV be a vector field defined on some planar domainD. Let D0⊂D be the zero set forV. The
Gauss mapα : D\D0 → S1 is defined asα(x) = V(x)

|V(x)| .

For a simple closed curveΓ ⊂ D \D0, the Gauss mapα induces a continuous mapα|Γ. If one travels alongΓ in
the positive direction once, the image underα |Γ necessarily covers the unit circle an integer number of times counting
orientation. This integer is thewinding numberof V alongΓ. The Poincaŕe index of an isolated singularityp0 is
the winding number of any simply connected curve that enclosesp0 and contains no other singularities either in its
interior or on the boundary. Denote this number asκ(V;p0). The Poincaŕe index is+1 for sources, sinks, centers,
and foci. It is−1 for saddles, and0 for regular points. ThePoincaŕe-Hopf theoremlinks the vector field topology
to the topology of the underlying domain in the following way. LetSbe a closed orientable manifold with an Euler
characteristicE. Furthermore, letV be a continuous vector field defined onSwith only isolated singularitiesp1, ...,pn.
Then∑n

i=1 κ(V;pi) = E.
An immediate corollary of the Poincaré-Hopf theorem is that given a particular vector fieldV, if one wants to

remove a singularity of a positive or negative Poincaré index, then one must simultaneously remove a singularity of
the opposite sign. In fact, for a 2-manifold, a zero total Poincaré index for a regionR guarantees that it is possible to
replace the vector field insideRwith a singularity-free vector field.

The Poincaŕe index is a powerful tool for describing singularities. However, it does not distinguish between sources
and sinks, nor does it provide information about periodic orbits and separatrices. Figure 4 illustrates this with a
number of examples. First, the Poincaré indices for the disk in case (b) and (d) are both one. When simplifying the
vector field inside the disk such that only one singularity remains, the Poincaré index alone cannot predict whether the
singularity is a source or a sink. Second, the Poincaré indices for the ring-shaped region in (e)-(g) are zero. However,
the three vector fields have very different characteristics. For example, when the vector fields inside the region are
singularity-free, the vector fields in (f) and (g) necessarily contain a periodic orbit, while the vector field in (e) does
not. The design of vector fields requires the imposition of additional quantitative information including the location
of the singularities, periodic orbits and separatrices, and the control of the smoothness and/or curvature of the vector
field. In this work, we have chosen to control singularities for vector fields defined on 2-manifolds, for which the
Poincaŕe index is insufficient since it does not distinguish between sources and sinks. In addition, we wish to set up a
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Fig. 4. Seven basic scenarios of isolating blocks and their associated Conley indices. The Conley indices can be used to distinguish between sources
and sinks (b and d), and it provides information on periodic orbits (e, f, g). By comparison, the Poincaré indices are the same for cases (b) and (d),
and for (e)-(g). Case (a), (b) and (e) are of particular interest since they are used in topological editing operations (Section 5.3).

framework that has the potential of being extended to the control of separatrices and periodic orbits. For these reasons,
we borrow basic ideas from Conley index theory and provide implementations for our topological editing operations
(Section 5.3) according to this theory.

The Conley index is defined in the context of arbitrary vector fields that produce continuous flows. It possesses the
continuation properties of the Poincaré index while being able to distinguish between sinks and sources. It provides
sufficient conditions on whether two singularities can cancel. More importantly, it can be used to identify periodic
orbits and separatrices, and to indicate whether two periodic orbits can be cancelled.

The following concept is the starting point for Conley index theory. Given a regionN ⊂ S, let ∂N denote the
boundary ofN. A compact setN is an isolating neighborhoodif for every p ∈ ∂N, ϕ(R,p) 6⊂ N, i.e., the trajectory
of any point on∂N leaves eventually either in forward or backward time. The set of boundary points which leave or
enterN immediately can be characterized, respectively, by

N− := {p ∈ ∂N | ϕ([0, t),p) 6⊂ N, ∀t > 0} , N+ := {p ∈ ∂N | ϕ((t,0],p) 6⊂ N, ∀t < 0}. (2)

A compact setN is anisolating blockif for each boundary point, there is either a forward or backward trajectory that
immediately leaves the region: that is,∂N = N−∪N+. Observe that an isolating block is a special case of an isolating
neighborhood.

Given an isolating blockN for a vector fieldV, its Conley index is defined to be the relative homology [Kaczynski
et al. 2004] ofN with respect toN−, i.e.CH∗(N) := H∗(N,N−). CH∗(N) = {CHk(N)|k = 0,1,2, ...} is a collection of
groups. When the domain of the vector field is a surface,CHk(N) = 0 for k≥ 3 (see [Conley 1978; Mischaikow 2002;
Mischaikow and Mrozek 2002] for further details and references). For the purposes of this paper the computation of
this index is fairly simple since our isolating blockN will always take the form of a polygonal region andN− will
be a finite number of disjoint sets consisting of boundary edges ofN. Idealized isolating blocks and their associated
Conley indices are indicated in Figure 4. Case (a) and (e) have the trivial Conley index, and (b), (c), and (d) have
the Conley index of a source, a saddle, and a sink, respectively. Of particular interest are case (a), (b), and (e). We
construct regions of these types for topological editing operations (Section 5.3).
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3. PREVIOUS WORK

Vector fieldanalysisandvisualizationhave been well studied, and a good survey is available in [Hauser et al. 2002].
On the other hand, vector fielddesignis far less explored. We will review existing vector field design systems, both for
planar domains and 3D surfaces. In addition, since our system allows the user to perform vector field simplification,
both geometrically and topologically, we also review existing vector field simplification techniques.

3.1 Vector Field Design Systems for Surfaces

There has been some prior work in creating vector fields on surfaces. In all the instances that we know, such systems
have been created in a quick manner to generate vector fields for a particular application, such as texture synthe-
sis [Praun et al. 2000; Turk 2001; Wei and Levoy 2001], fluid simulation [Stam 2003], or for testing a vector field
visualization technique [van Wijk 2003]. Furthermore, the details of these design systems have not been published.

There are several approaches for creating a surface vector field using these systems. In the first approach, a 3D
vector field is specified and projected onto the surface to obtain a tangential vector field [van Wijk 2003]. This is
similar to performing texture synthesis on surfaces through solid textures. While it is simple and fast, achieving
control is hard. In the second approach, the user specifies desired vector values at a few locations on the surface, and
the system performs relaxation to obtain a global surface vector field [Turk 2001; Wei and Levoy 2001]. This can be
seen as a diffusion process in which the desired vector values are smoothly propagated from the seed points to the
rest of the surface. In the third approach, the user again specifies the vector values at a few places on the surface.
Then a global vector field is constructed by interpolation these locations using Gaussian radial basis functions over
the surface [Praun et al. 2000]. Another way of creating surface vector fields is to parameterize the surface and define
vector fields in the parametric domain [Stam 2003].

These vector field design systems do not provide control over vector field topology, such as the number and location
of the singularities in the vector field. However, we borrow some of these ideas to create an initial vector field in the
first of a three-stage design pipeline.

3.2 Vector Field Design Systems for Planar Domains

For planar domains, vector field design systems based on topological information have been developed. Van Wijk
created a vector field design system to demonstrate his image-based flow visualization technique [2002]. In this
design system, the user specifies desired singularity locations and types. The system converts each specification into
a simple vector field and combines them into a global vector field using radial basis functions. The idea of using
basis vector fields is inspired by the work of Wejchert and Haumann [1991]. However, vector fields created in this
manner often have more singularities than what the user has intended. The system does not provide a way of removing
undesired singularities, and therefore it lacks control over vector field topology. Rockwood and Bunderwala [2001]
propose a technique that uses geometric algebra to create a vector field based on user-specified singularity locations
and types (source, saddle, etc). The user can interactively create a vector field by adding, removing and editing the
singularities. This system also lacks control over vector field topology since the vector field created this way may
have unspecified singularities. Theisel [2002] proposes a 2D vector field design system in which the user has the
complete control over vector field topology. To do so, the user specifies thetopological skeletonof the desired vector
field and the system creates a piecewise-linear vector field to match it. This system requires the user to specify the
desired vector field skeleton, which can be cumbersome for complicated vector fields. Both of the above topology-
based design systems [Rockwood and Bunderwala 2001; Theisel 2002] require a planar parameterization, and it is not
obvious how these systems should be generalized to curved surfaces.

All of above systems have certain traits that we wish to incorporate into the vector field design system. In fact,
we will borrow techniques from existing systems to serve our purpose at various stages. This will become clear in
Sections 4, 5, and 6.
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3.3 Vector Field Topology

In their pioneering work, Helman and Hesselink [1991] visualize a vector field by extracting and visualizing its topo-
logical skeleton, which consists of the singularities and their connectivity. They propose an efficient method for
extracting the topological skeleton for continuous vector fields defined in either a plane or a volume. This work has
inspired a great deal of interests in understanding and visualizing vector fields through topological analysis. There has
been considerable work in the Visualization community on vector field topology, and we only mention a few relevant
publications here. Scheuermann et al. [1998] use Clifford algebra to study the non-linear singularities in a vector field
and propose an efficient algorithm for merging nearby linear singularities into a higher-order singularity. Later, Polth-
ier and Preuß use Hodge-Decomposition to locate singularities of different types in a vector field [2003]. Wischgoll
and Scheuermann [2001] propose an efficient algorithm for computing the periodic orbits in a planar flow.

3.4 Vector Field Simplification

Vector field simplification has been well-researched by the Scientific Visualization community. Most of the datasets
that come from scientific simulation are difficult to analyze due to noise in the data. Vector field simplification refers to
reducing the complexity of a vector field while maintaining its major features. A vector field simplification technique
can be either topology-based (TO) or non-topology-based (NTO).

NTO methods perform smoothing to a vector field, either globally or locally. Existing NTO techniques, such
as [Polthier and Preuß 2003; Westermann et al. 2000; Tong et al. 2003], are often based on performing Laplacian
smoothing on the potential of a vector field, which is a scalar field. For example, Tong et al. [2003] decompose a vector
field into three components: curl-free, divergence-free, and harmonic. Each component is individually smoothed
and the results are summed. Vector-based smoothing is performedonly on the harmonic part, while potential-based
smoothing applies to the divergence-free and curl-free components, respectively. Smoothing operations reduce the
vector field complexity and most likely remove a large percentage of the singularities in the original vector field.

TO methods simplify the topology of a vector field explicitly. According to the Poincaré-Hopf theorem, it is possible
to eliminate a pair of singularities with opposite Poincaré indices at the same time. This idea has been formulated into
an operation called singularity pair cancellation, which forms the foundation for many existing TO methods. A class
of TO methods performs pair cancellation on scalar fields defined on surfaces [Edelsbrunner et al. 2002; Edelsbrunner
et al. 2003] by changing the values of the scalar function near the singularity pair. This is equivalent to simplifying the
gradient vector field of the scalar function. Ni et al. [2004] allow the user to design fair Morse functions over a mesh
surface, which is equivalent to designing gradient vector fields. In their work, the user specifies the desired number
and configuration of the critical points of the function, and the system performs multi-grid relaxation to determine a
Morse function that meets the requirements.

Another class of TO methods perform cancellation on a vector field directly, such as the technique by Tricoche
et al. [2001]. This technique first locates a region surrounding the singularity pair, and then performs a non-linear
optimization on the vector values at the interior vertices such that the Poincaré indices are zero for every triangle
inside the region.

All the TO methods mentioned above are based on Morse theory, e.g., gradient vector fields.
Our system provides both a NTO method (Section 5.2) and a TO method (Section 5.3.1), and the implementations of

our methods are rather different from existing techniques. For instance, our singularity pair cancellation algorithm is
based on Conley index theory, which allows us to work with arbitrary vector fields. Furthermore, existing topological
analysis and simplification techniques are limited to planar and volume domains because it is not clear how to represent
a continuous vector field on a mesh surface. We present a piecewise interpolation scheme in Section 6 that overcomes
this problem, therefore allowing vector field analysis and editing to be adapted to meshes.
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Fig. 5. An initial vector field can be created usingsingular elements(left, highlighted by colored boxes), andregular elements(right, highlighted
by colored arrows). The centers of the colored boxes are the locations of the desired singularities. Notice in both cases, there are singularities not
specified by the user.

4. DESIGN FOR PLANAR DOMAINS

Our planar vector field design system consists of three stages:initialization, analysis, andediting. During the initial-
ization stage, the user quickly creates a vector field with a set of specifications. Vector field topology is not a concern at
this stage. Next, the system performs both geometric and topological analysis of the current vector field and provides
visual feedback to the user. In the editing stage, the user modifies the vector field through a set of pre-defined editing
operations. The user may perform many editing operations before accepting the result. The initialization and analysis
stages are relatively straightforward, and we describe them in Section 4.1 and 4.2, respectively. The editing stage is at
the core of our vector field design system, and we will describe this in Section 5.

4.1 Creating the Initial Vector Field

The first stage allows the user to easily create an initial vector field without being concerned about vector field topology.
There have been two ways of creating such a field: relaxation [Turk 2001; Wei and Levoy 2001], and using basis vector
fields [Praun et al. 2000; van Wijk 2002]. We adopt van Wijk’s basis vector approach [2002] because we are impressed
by its intuitive nature and its simplicity. In this approach, every user-specified constraint is used to create a basis vector
field defined in the plane. An initial vector field is then constructed as a weighted sum of these basis vector fields.
We will refer to each user-specified constraint as adesign element, which can be eithersingularor regular. A design
element has a center location and a set of control parameters, which will be described next.

A singular element corresponds to a vector field that has a singularity of certain type at a desired location. For
instance, if the user desires an isotropic source at locationp0 = (x0,y0) with strengthk > 0, the system will create the
following vector field for any pointp = (x,y) in the plane:.

V(p) = e−d‖p−p0‖2
(

k 0
0 k

)(
x−x0

y−y0

)
(3)

Here,d is a decay constant that is used to control the amount of influence of the basis vector field. Other isotropic
singular elements include a sink, a saddle, a counter-clockwise center, and a clockwise center, whose matrices are

the following:

(−k 0
0 −k

)
,

(
k 0
0 −k

)
,

(
0 −k
k 0

)
,

(
0 k
−k 0

)
. The system allows the user to modify the scale,

orientation and center location of an existing singular element as well as to remove one. Modifications to singular
elements will result in more complicated matrices (details can be found in [van Wijk 2002]).

A regular element assigns a particular nonzero vector valueV0 at a desired locationp0. Again, the system creates a
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basis vector field as follows:

V(p) = e−d‖p−p0‖2
V0 (4)

The resulting vector field is interactively updated and displayed as the user continues to make adjustment to the set
of regular and singular elements. Figure 5 shows two vector fields that were generated using singular elements (left)
and regular elements (right). In practice, both types of specifications can be combined to create an initial vector field.
Notice that summing the basis vector fields may cause additional (perhaps unwanted) singularities to appear, i.e., the
ones that are not at the centers of any colored box in this figure. The unwanted singularities will be handled through
the topological editing operations that we will describe in Section 5.

4.2 Vector Field Representation and Analysis

Our system performs the following analysis on a given vector field: computing curl and divergence, locating singular-
ities and determining their types, and tracing separatrices.

The initial vector field created in the first stage is difficult to analyze because of its complicated formula (Equation 3
and 4). Furthermore, analytical formulas are not available for 3D mesh surfaces that lack a global parameterization.
To perform analysis in a fast and efficient manner and to be able to generalize the method to surfaces, we follow
the approach by Helman and Hesselink [1991] and use a piecewise approximation in which the underlying domain
is tessellated by a triangular mesh. The vector values are sampled at the vertices according to the analytic formula
and are linearly interpolated on the edges and across the interiors of the triangles. To be more specific, for a given
planar triangular mesh, our system represents a vector fieldV by assigning vector values{W1,W2, ...,Wn} at the mesh
vertices{v1,v2, ...,vn}. For a pointp = (x,y) inside a triangleT = {vT1,vT2,vT3} whose barycentric coordinates are
(α1,α2,α3), we have

V(p) =
3

∑
j=1

α jWTj (5)

or, under some local coordinate system ofT, V(p) = MT

(
x
y

)
+

(
e
f

)
, whereMT =

(
a b
c d

)
. This representation does

not require an analytical formula and is compatible with many graphics applications that use vector fields. Further-
more, Equation 5 can be adapted to represent a continuous surface vector field (Section 6.2.1).

For each triangle, our system computes the following information: the divergence and curl, the Poincaré index, the
location of the singularity inside if any, and the incoming and outgoing directions if the triangle contains a saddle.
Details of computing these quantities using the piecewise linear representation can be found in [Tricoche 2002]. We
also compute the topological skeleton of the vector field, which is done by following the approach of Helman and
Hesselink [1991]. Starting from every saddle point, we follow the flow forward in its outgoing directions until the flow
is stopped at a singularity or hits the boundary. To trace the trajectories away from a saddle we use a Runge-Kutta
algorithm with adaptive stepsize control [Cash and Karp 1990]. This gives us the two outgoing separatrices. Similarly,
we obtain the two incoming separatrices by following the flow backward along the incoming directions of the saddle.
Figure 3 and 5 show the topological skeletons of the corresponding vector fields.

5. EDITING

The vector field editing stage is at the heart of our design system. The set of useful editing operations are application-
dependent. For instance, in texture synthesis and non-photorealistic rendering, the user often needs to remove un-
wanted singularities or to move them to less visible regions. Fluid simulation may require adjusting the amount of
curl and divergence of an external force. Furthermore, noisy datasets often contain a large number of singularities and
rather complex behaviors. Simplifying the flow while maintaining its major features is a necessary task for any vector
field design system. We provide the following operations:
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Fig. 6. In this figure, a vector field (left) is first rotated byπ
2 (middle), then reflected with respect to theX-axis (right).

(1) Matrix actions on flows:flow rotationsandflow reflections.
(2) Flow smoothingwithin a user-defined region.
(3) Topological editing operations:singularity pair cancellationandsingularity movement.

Matrix actions can be used to adjust flow characteristics such as curl and divergence. Flow smoothing is an efficient
vector field simplification operation that can also simplify vector field topology.

Topological editing operations are used to provide explicit control over the number and location of the singularities
in the vector field. Most existing singularity pair cancellation algorithms assume that there is a connecting orbit
between the singularity pair, as in the case of a source/saddle or sink/saddle cancellation. When the pair involves
a center or a focus of a high curl, however, the connecting orbit either does not exist or cannot be computed in a
numerically stable fashion. Consequently, these techniques do not address such cases. Similar issue comes up in
singularity movement, where it is necessary to compute the trajectory that connects the singularity to its new desired
location under the current flow. Such a trajectory does not always exist when the singularity is a saddle or a center.
As we will describe later Sections 5.3.1 and 5.3.2, matrix actions can also be used to modify the types of singularities
such that the aforementioned connecting orbit exists and can be computed easily in the modified field. This is essential
to overcome numerical instabilities associated with regions of high curl and regions near saddles.

Since we use a piecewise linear approximation, all the editing operations affect the vector values at the vertices
only. These values are then extended to a continuous vector field defined on the whole mesh surface through piecewise
linear interpolation.

5.1 Matrix Actions on Flows

Any 2×2 matrix M =
(

a b
c d

)
induces a vector field operator as follows:(M(V))(p) =

(
a b
c d

)
V(p). WhenM has a

full rank, it does not change the number or location of the singularities in the vector field. Furthermore,M maintains

the Poincaŕe index if det(M) > 0, and negates it ifdet(M) < 0. For anyθ ∈ R, Rθ =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
is aflow

rotation operatorandFθ =
(

cos(θ) −sin(θ)
−sin(θ) −cos(θ)

)
is flow reflector operator. Actions ofRθ ’s andFθ ’s are of particular

interests to us, and we will describe them in detail next.
For anyθ and any vector fieldV, it is straightforward to verify that

(curl(Rθ (V)))2 +(div(Rθ (V)))2 = (curl(V))2 +(div(V))2 (6)
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Fig. 7. This figure shows the results of applying flow smoothing to a user specified region (inside the white boundary). Notice the vector field
defined outside the region is not changed.

This implies that for any pointp in the domain, there are appropriate rotations ofV such thatcurl(Rθ (V))(p) = 0
or div(Rθ (V))(p) = 0. Furthermore, a curl-free vector field can be rotated into a divergence-free vector field and
vice versa with aπ

2 rotation. Topologically speaking, flow rotations do not alter the number, the location, or the
Poincaŕe index of the singularities (det(Rθ ) = 1 > 0). Any singularity with a Poincaré index of+1 can be converted
into a source with an appropriate rotation. A saddle remains a saddle under flow rotations; however, its incoming
and outgoing directions are rotated, possibly by different amounts. These topological properties make flow rotations
essential for the topological editing operations such as singularity pair cancellation (Section 5.3.1) and singularity
movement (Section 5.3.2), especially in regions of high curl.

Fθ induces a reflection on the vector values of a vector fieldV with respect to axiscos( θ
2 )X + sin( θ

2 )Y = 0. It is
straightforward to verify thatF2

θ = Id. For planar domains, flow reflections do not alter the number or location of
the singularities inV. Sincedet(Fθ ) = −1 < 0, they negate the sign of the Poincaré indices. Just as flow rotations
can convert a singularity with a Poincaré index of+1 into a source, flow reflections can turn any saddle into a source
with an appropriate choice of the reflection axis. This makes flow reflections crucial for our singularity movement
operations on saddles (Section 5.3.2).

Figure 6 shows the effect of applying flow rotations and reflections to a planar vector field. The actions areR0 = Id
(left), Rπ

2
(middle), andFπ

2
(right). Notice that in all instances, the number and location of the singularities do not

change. Flow rotations maintain the Poincaré indices while flow reflections negate their signs.
The concepts of flow rotations and reflections are not new. Theisel and Weinkauf [2002] define four types of oper-

ations for feature-matching between vector fields. These operations include rotation and negative scaling (including
reflection). However, we believe that it is a novel idea to use flow rotations and reflections to overcome the numerical
difficulties associated with regions of high curl and regions near saddles.

5.2 Flow Smoothing

A vector field often contains noise, and vector field simplification can be used to reduce the flow complexity while
maintaining the major features. Here, we describe a non-topology-based simplification method called flow smoothing,
which is carried out in two stages. First, the user specifies a simply-connected region by drawing a closed loop in
the domain. Second, the vector field inside the region is replaced with a “simpler” vector field. The key for this
operation is to let the user decide the region for smoothing. Once the region is determined, a number of known
smoothing techniques, such as [Westermann et al. 2000; Tong et al. 2003] can be used to replace the flow inside. In
particular, Tong et al. [2003] compute a Hodge-Helmholtz decomposition of the original vector field. Smoothing is
performed on the potentials of the curl-free and divergence-free parts. However, smoothing the harmonic component
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Fig. 8. This figure illustrates our two-step algorithm for singularity pair cancellation between a sources+ and a saddles−. In the left, an isolating
blockR is found to enclose both singularities and its boundary consists of two segments: inflow (red) and outflow (green). The vector field insideR
is replaced with a flow that has no singularities (right).

still requires vector-valued smoothing. Here, we use a smoothing approach on the vector values directly without
performing the Hodge-Helmholtz decomposition. This approach avoids the costs of performing the decomposition and
the two additional potential-based smoothing operations, and therefore is faster. Furthermore, vector-valued smoothing
tends to remove high-frequency noise from the data as well as reduce the number of singularities in the vector field.
This is supported by our numerical tests. For remeshing purposes, Alliez et al. [2003] employ a similar component-
based approach to smooth curvature tensor fields.

Given a vector fieldV and a user-specified regionR, we replaceV with another vector fieldV insideR. This is
achieved by solving the vector-valued Laplace equation insideR, withV being fixed on∂R. LetV(p)=

(
F(p1, p2) G(p1, p2)

)
.

Then the new vector fieldV insideR is given by:
(52F = 0
52G = 0

)
(7)

In practice, the user-specified regionR is part of the underlying mesh that is used to represent the planar domain. To
solve Equation 7 on this discrete mesh, the vector values are fixed at the boundary vertices ofR, i.e.,F = F, G = G.
The vector values ofF andG for an interior vertexvi is determined by:

(
F(vi)
G(vi)

)
= ∑

j∈J
ωi j

(
F(v j)
G(v j)

)
(8)

Here,J is the set of indexj ’s such that(vi ,v j) is an edge in the mesh. The weightsωi j are defined according to the
mean-value coordinates of Floater [2003] since this method guaranteesωi j to be non-negative. This leads to a pair of
sparse linear systems, which we solve through an implicit bi-conjugate solver.

In Figure 7, a complicated vector field with many singularities (left) is converted into a vector field with only one
singularity (right) through smoothing. The boundary of the user-specified region is highlighted with a white loop.
Notice that the vector field is not altered outside the user-specified region. Later, we make use of flow smoothing to
perform singularity pair cancellation (Section 5.3.1) and singularity movement (Section 5.3.2).

5.3 Topological Editing Operations

A vector field often contains unwanted singularities. To allow a user to control the number and location of the sin-
gularities in a vector field, our system provides two topological editing operations:singularity pair cancellation, and
singularity movement. Singularity pair cancellation refers to removing a pair of (unwanted) singularities with opposite
Poincaŕe indices, while singularity movement is used to move a singularity to a more desirable location. Both oper-
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Fig. 9. This figure illustrates our construction of an isolating blockR for singularity pair cancellation. In the left, a regionR+ is generated by
following the flow forward from a neighborhood ofs+. Similarly, a regionR− is obtained by following the reverse flow from a neighborhood ofs−.
When there is a unique connecting orbit betweens+ ands−, R= R+

⋂
R− is an isolating block with the trivial Conley index. In the right, two valid

regionsR1 andR2 are obtained by using different sizes of the neighborhoods ofs−. R2 is preferred since it is larger and tends to result in smoother
flows after the cancellation.

ations provide topological guarantees in that they only affect the intended singularities, and our implementation are
based on Conley index theory.

5.3.1 Singularity Pair Cancellation.As discussed in Section 2.1, singularity elimination must be performed for
a pair of singularities with opposite Poincaré indices. This operation is therefore calledsingularity pair cancellation.
There have been several pair cancellation methods for simplifying scalar fields on surfaces [Edelsbrunner et al. 2002;
Edelsbrunner et al. 2003]. These techniques achieve singularity pair cancellation for the gradient field by modifying
the scalar values in a region near the singularity pair. It is not clear how these techniques can be used for generic vector
fields, which need not correspond to any scalar functions.

Tricoche et al. [2001] propose a pair cancellation technique for vector fields by allowing a saddle to be cancelled
with either a source or a sink. To achieve this, they first find a narrow neighborhood that encloses the singularity pair
and their connecting orbit. Then an iterative non-linear optimization is performed on the vector values at the interior
vertices of this region so that the Poincaré index for every triangle is zero. There are a number of issues with this
approach. From a theoretical viewpoint, any simplification technique based on the Poincaré index cannot be applied
to the cancellation of a repeller/attractor pair in which one of the entities is a periodic orbit (Section 2.1). From a
numerical point of view, this technique is not robust in handling pair cancellations that involve a center or a focus with
high curl. Furthermore, the non-linear optimization technique is computationally expensive and it does not guarantee
that a solution can be found.

In this work, we propose a new pair cancellation technique based on Conley index theory, which provides theoretical
guarantees for any attractor/repeller pair including objects other than singularities. We will only consider the case of
a source/saddle pair cancellation. If the singularity with a positive Poincaré index is not a source, we can always find
an appropriate rotation to turn it into a source while the saddle does not change its type. Our algorithm consists of
two stages. First, the system determines an isolating blockR with the trivial Conley index such thatR encloses the
singularity pair in its interior. Second, the flow insideR is replaced with a new, singularity-free vector field. Figure 8
provides an illustration of the idea. Later, we use a similar two-stage approach for moving a singularity (Section 5.3.2).

Let s+ ands− be the source and saddle, respectively. When there is a unique connecting separatrix between them,
we can construct an isolating blockR containings+ ands− on which the cancellation can be performed [Mischaikow
and Mrozek 2002]. We need the following definition:

DEFINITION 5.1. For a given vector fieldV, let ϕ denote the flow induced byV. For a regionQ in the domain, we
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Fig. 10. This figure shows how flow rotations help overcome the numerical difficulties associated with high curl in a vector field. A center/saddle
cancellation is performed on a vector field (upper-left) to obtain a new vector field (lower-left). The vector field is first rotated byπ

2 (upper-right),
followed by a pair cancellation (lower-right) before a compensating rotation is performed (lower-left).

define its images under the forward and reverse flow as:

Ω(Q) = ϕ(Q, [0,∞)) Ω−1(Q) = ϕ(Q,(−∞,0]). (9)

To find the isolating blockR, we begin with isolating neighborhoodsM and N of s+ and s−, respectively. In
general,R= Ω(M)

⋂
Ω−1(N) is an isolating neighborhood. If there exists a unique separatrix going froms+ to s−,

then the Conley index ofR is trivial and it is possible to replace the vector field insideR with one that is singularity
free [Mischaikow and Mrozek 2002] (Figure 9, left).

Next, we describe a practical algorithm for computingRover a domain represented by a triangular mesh. LetM and
N be sets of triangles that encloses+ ands−, respectively.Ω(M) is obtained by performing region growing fromM
and following the flow forward. Similarly,Ω−1(N) is obtained by performing regions growing fromN and following
the flow backward. We need the following definition:

DEFINITION 5.2. Given a vector fieldV and a polygonal regionR, a boundary edgee is anexit for the forward
flow with respect toV if maxp∈e(Np ·Vp) > 0. Similarly, e is an exit for the backwardflow with respect toV if
minp∈e(Np ·Vp) < 0. Np is the outward normal to the region at pointp.

If V is a piecewise linear vector field on a boundary edgee, thene is an exit edge for theforward flow with
respect toV if max(V(v1) ·Ne,V(v2) ·Ne) > 0. Similarly, e is an exit edge forbackwardflow with respect toV if
min(V(v1) ·Ne,V(v2) ·Ne) < 0. Here,Ne is the outward normal to the region along edgee.

Let M be the triangle that containss+. Starting fromM, we constructΩ(M) by adding one triangle at a time and
keeping track of the behavior of the flow on the boundary edges ofΩ(M). A new triangle can be added only by
crossing an exit edge. The region growing process continues until there are no more exit edges, i.e., the flow enters

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



16 · Eugene Zhang, Konstantin Mischaikow and Greg Turk

Ω(M) everywhere on its boundary.
Ω−1(N) is constructed in a similar fashion by starting fromN and following the flow backward. However, the choice

of N is a delicate issue, and its choice affects the shape ofΩ−1(N) and subsequentlyR. Due to the limited resolution
of the underlying mesh,R needs to be as large as possible, so long as its Conley index remains trivial. We perform a
linear search on the length of the outgoing separatrices ofs− such that the covering triangles formN. Figure 9 shows
the effect of following these separatrices to varying lengths.

To replace the flow insideR, we use flow smoothing. As described earlier, this operation tends to simplify the vector
field topology, and our numerical results indicate that flow smoothing is efficient for singularity pair cancellation as
long as the regionR has a reasonable shape. The following pseudo-code illustrates our algorithm for cancelling a
source/saddle pair where the sources+ has a zero curl.

1 PairCancalation(V, s+, s−)

2 Let M be the triangle containings+, and we use region growing to findΩ(M).
3 Let γ = 1, dγ = 0.5, andVworking = V1.

4 Let S1 andS2 be the two outgoing separatrices ats−.

5 while γ > 0 anddγ > δ (delta is a user-specified constant)

6 Let S1,γ ⊂ S1 be the portion starting froms− such thatlength(S1,γ) = γ length(S1). DefineS2,γ similarly.

7 Let N be the minimal set of triangles that containsS1,γ andS2,γ , and computeΩ−1(N) using region growing.

8 R= Ω(M)
⋂

Ω−1(N).
9 if Rdoes not satisfy the necessary Conley condition,

10 dγ = dγ/2, γ = γ−dγ.

11 else

12 perform smoothing inR.

13 if the resulting flow contains any singularity

14 undo smoothing.

15 dγ = dγ/2, γ = γ−dγ.

16 else

17 updateVworking.

18 dγ = dγ/2, γ = γ +dγ.

19 end if

20 end if

21 end while

In Line 9, in order to meet Conley conditions,R must be simply-connected, contain no other singularities except
s+ ands−, and have a trivial Conley index. The purpose of the binary search onγ is to determine an optimal length
along the separatrices such that the regionRhas a reasonable shape. Whenγ = 0, R is a narrow region that covers the
singularity pair and their connecting orbits with a trivial Conley index. Whenγ → 1, R tends to have a nice shape.
However, it may cover other singularities, such as the sinks that are linked tos− through the outgoing separatrices, and
the Conley index ofR is no longer trivial. The binary search process balances between the two factors, and it tends to
converge very quickly since region growing and smoothing is very fast. In addition, whendγ is small enough,γ and
γ +dγ correspond to the same set of triangles when computingN, and the computation can simply be avoided.

Flow rotation is crucial for the success of pair cancellation operations. If the original vector field has high curl
arounds+ as in the case of a divergence-free flow, the connecting orbit between the singularities may not even exist.
Figure 10 demonstrates how our system cancels a center and saddle pair (upper-left). The flow is first rotated byπ

2
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Fig. 11. This figure illustrates the concept of moving a source fromsold to snew. An isolating blockR is found to enclose bothsold andsnew such
thatRhas the Conley index of a source. Then a small regionR′ is found to enclosesnew, and appropriate vector values are assigned to∂R′ such that
it forces a source atsnew. For regionR\R′, flow smoothing operation produces a new vector field without any singularity.

into a curl-free vector field (upper-right) in which the center becomes a source and there is now a connecting orbit
between the source and the saddle. Next, the source and the saddle are cancelled. Finally, a compensating rotation of
−π

2 is performed (lower-left).

5.3.2 Singularity Movement.Moving a singularity to a new location provides the user with control over the posi-
tion of the singularities in a vector field. To our knowledge, this is the first time such an operation is proposed and an
algorithm is presented. Through flow reflection and flow rotation, the problem of moving a singularity is reduced to
moving a source. Similar to singularity pair cancellation, our algorithm for moving a source is based on Conley index
theory and is carried out in two stages. First, we compute an isolating blockR such that it encloses the connecting
orbit for the current locationsold and the desired new locationsnew under the current vector fieldV. By construction,
Rhas the Conley index of a source and does not contain any other singularities either in its interior or on its boundary
(case (b) in Figure 4). Second, the vector field inside R is modified to contain only one singularity atsnew (Figure 11).

Let R= Ω(M)
⋂

Ω−1(N), whereM is a small neighborhood ofsold andN is a neighborhood ofsnew. To ensuresnew
is in the interior ofR, another points′ is located such that it is on the forward trajectory fromsnew underV. Let us
consider the trajectoryJ of s′ under the flowRπ

2
(V). J serves the same purpose as the outgoing separatrices of the

saddle in pair cancellation. LetN be the largest segment onJ that makesR an isolating block with the Conley index
of a source. This ensures thatR is a wide region.

Let T be the triangle that containssnew. Our system assigns vector values at the three vertices ofT to force a source
at snew. Let R′ = {T}. Then regionL = R\R′ has two boundaries. The flow entersL from the inner boundary and
leaves at the outer boundary.L therefore has the trivial Conley index (see Figure 4(e)), and flow smoothing insideL
usually produces a vector field without singularities.

Moving a center or a saddle is considerably more difficult than moving a source. First, finding a connecting orbit
between the saddle and a regular point is numerical unstable. Moreover, finding a connecting orbit between a center
and a regular point is almost impossible. To solve these numerical issues, we make use of flow rotations and reflections
to make singularity movement applicable to any linear singularity. Ifsold is a saddle, we use flow reflection to turn
it into a positive index singularity. If the vector field has high curl aroundsold, then we rotate the vector field so that
the flow is converted to a vector field that has little curl atsold. This simplifies the process of locating the connecting
orbit betweensold andsnew. Figure 12 provides an example of moving a saddle in a vector field (upper-left). First,
flow reflection is applied (upper-right) to turn the saddle into a source. Next, the source is moved (lower-right) before
a compensating reflection is applied (lower-left).
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Fig. 12. This figure shows how flow reflections help overcome the numerical difficulties associated with saddles. A singularity movement operation
is applied to a vector field (upper-left) to obtain a new vector field (lower-left). The vector field is first reflected so that the saddle becomes a source
(upper-right), followed by a source movement (lower-right) before a compensating reflection is performed (lower-left).

6. DESIGN FOR 3D MESH SURFACES

In this section, we describe how we adapt our three-stage vector field system for planar domains to mesh surfaces.
There are several challenges that we must overcome. First, a 3D surface often lacks a global parameterization. How-
ever, such a parameterization allows the correlation of tangent vectors defined at different locations, which is needed
to build surface-based basis vector fields from design elements. Second, topological analysis of vector fields requires a
scheme that interpolates vector values defined at the vertices and produces a continuous vector field everywhere inside
triangles and along edges. However, tangent planes of a mesh surface are discontinuous at the vertices and edges, and
the definition of vector field continuity from smooth manifolds does not apply. In addition, as we will demonstrate in
Section 6.2.1, the piecewise linear interpolation scheme that works well for planar vector fields will cause inconsistent
vector fields across edges. To address these issues, we borrow ideas ofgeodesic polar mapsandparallel transport
from classical differential geometry to set up correlations between tangent vectors defined at different parts of the sur-
face. The correlations are used for two purposes. First, we extend the construction of basis vector fields (Section 4.1)
to surfaces by parallel transporting tangent vectors from the location of the design element to anywhere on the surface.
Second, we adapt the piecewise linear approximation from planar domains (Section 4.2) to mesh surfaces by paral-
lel transporting vector values from a vertex to anywhere inside its1-ring neighborhood. The piecewise interpolation
scheme results in a continuous surface vector field, and it supports efficient vector field analysis and editing operations.

6.1 Basis Vector Fields for Initialization

In this section, we describe an approach in which surface basis vector fields are directly constructed from design
elements. Recall that in the planar case, a design elementO is converted into a global basis vector field according to
Equations 3 and 4. To extend this to surfaces, we perform the following three-step process, as illustrated in Figure 13.
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Fig. 13. Our three-step algorithm (from left to right) for creating a surface basis vector field from a user-specified constraintO. First, the surface
is parameterized using ageodesic polar mapwith respect toO. This parameterization is denoted asα. Second, the basis vector field is computed
inside the tangent plane atO with the polar coordinates fromα. Finally, the vectors areparallel transportedalong shortest geodesics on the surface.

First, we compute ageodesic polar mapwith respect to the location ofO (left), which assigns every pointA on the
surface with a pair of coordinates(xA,yA). This can seen as building a global parameterization for the surface using
the tangent plane atO. Next,(xA,yA) are substituted into Equation 3 or 4 to obtain a tangent vector valueWA defined
at O (middle). Finally,WA is parallel transportedfrom O to A along the shortest geodesic connecting them (right).
The process is based on several ideas from classical differential geometry, namely,geodesics, geodesic polar maps,
andparallel transport. We will review each of these in turn.

A geodesic on a curved surface is a locally shortest and straightest curve. It is a generalization of a straight line
in the plane. Starting from a pointp on the surface, there is a geodesic in every tangent direction−→v . Denote this
geodesic byγp,−→v . A point q onγp,−→v with a distanceρ from p can be identified by the coordinates(ρ,θ). Hereθ is the
angular coordinate of−→v with respect some local frame atp. In the plane, the coordinates reduce to the familiar polar
coordinates. This map is thegeodesic polar map. On a curved surface, a geodesic polar map is neither bijective nor
continuous. For example, on the Earth, a geodesic polar map with respect to the North Pole will have discontinuity
at the South Pole. However, since the focus of a design element is in a nearby region, the geodesic polar map with
respect to the design element meets our needs.

In differential geometry, parallel transport is used to correlate tangent vectors that are defined at different locations
using a geodesic that connects them. Formally,

DEFINITION 6.1. Let p andq be two points on a smooth manifoldS, and letγ : [0,1]→ Sbe a geodesic such that
γ(0) = p andγ(1) = q. Furthermore, letVp andVq be tangent vectors defined atp andq, respectively. ThenVp andVq
are said to beparallel with respect toγ if the oriented angle betweenγ ′(0) andVp equals that betweenγ ′(1) andVq.
Furthermore,Vq is said to be theparallel transportof Vp alongγ.

In the above definition,γ gives rise to an orthonormal and bijective linear map betweenTMp andTMq, the tangent
planes atp andq. This map is atransportfunction and is denoted byfpq.

For a design elementd, let αd : S→R2 be a geodesic polar map with respect tod, and let fdp : TMd → TMp be the
transport function along a geodesicγdp. Then the surface basis vector fieldW(p) corresponding to a design elementd
is constructed asW(p) = fdpV(αd(p)). In this equation,V is evaluated according to Equation 3 or 4. For the purpose
of building the geodesic polar mapαd and computing the transport functionfdp, we need to compute a geodesic from
any vertex of the surface to the design elementd. In the following section, we will describe how to create a continuous
vector field everywhere on the surface by interpolating the vector values defined at the vertices.

Assume that the design elementd is situated inside a triangleT. We first compute the geodesic distance function
gd with respect tod for every vertex using the fast marching method [Kimmel and Sethian 1998]. The values ofgd at
a vertex is the radial (ρ) component of the geodesic polar map. To construct the angular (θ ) component in the ideal
situation, one needs to perform particle tracing from a vertex in the opposite direction of5gd, the gradient vector field
of gd. However, performing particle tracing for every vertex is expensive. In addition,−5gd often has local minima
other thand. To overcome these problems, we propose a two-region approach in which the angular componentθ is
computed directlyonly within a surface disk surroundingd such that the disk contains a user-specified percentage of
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Fig. 14. Design elements for creating an initial vector field. From left to right: a dipole vector field on a sphere using a source element, a singularity-
free vector field on a torus with three regular elements, and another vector field on the torus with a clockwise center element and a counter clockwise
element. Notice the surface basis vector fields are very efficient for creating initial vector fields.

the total vertices in the mesh. We use25%in practice. For a point inside the disk, we project it onto the tangent plane
at d to obtainθ . For a vertexp outside the disk, we perform particle tracing fromp in the direction of−5gd until it
hits an edgee= rs that is on boundary of the disk. Ifθ(r) andθ(s) are both known, thenθ(p) is obtained by linearly
interpolating betweenθ(r) andθ(s). If particle tracing fromp fails to reach any boundary edge, then there is not a
shortest geodesic betweenp andd. In this case, a randomθ value is assigned top. Although this may seem to have
created discontinuities in the vector field, let us recall that the vector values are only computed at the vertices at this
stage. In the next section, we will describe a piecewise interpolation scheme in which a continuous vector field is
created based on the values defined at the vertices.

The above method works well for nearly flat or spherical regions. However, nearly cylindrical features, the pro-
jection is likely to result in undesired vector values on the side of the cylinder opposite to the location of the design
element. We are investigating other possible surface parameterization, such as cylindrical coordinates, to address such
cases.

Given a geodesic polar map, a tangent vector can be parallel transported to a vertex along a geodesic. This completes
the construction of a basis vector field. Figure 14 provides three example vector fields created using basis vector fields:
a dipole vector field on a sphere with a single source element (left), a singularity-free vector field on a torus with three
regular elements (middle), and another vector field on a torus with a clockwise center element and a counterclockwise
center element (right).

Let us stress that this is not the only way to create basis vector fields. In van Wijk’s visualization tool [2003],
an element is translated into a 3D vector field before being projected onto the surface. While our approach appears
to be more intuitive in this case given that a surface is locally homeomorphic to a plane, van Wijk’s 3D projection
method is faster since it does not require the construction of geodesic polar maps. Constrained optimization [Turk
2001; Wei and Levoy 2001] is another way to produce an initial vector field with desired behaviors. Praun et al. [2000]
propose a vector field propagation approach in which a vector value is defined inside one face of the mesh surface.
Through region growing, the vector value for a new triangle is obtained by computing the average tangent vectors at
its neighboring triangles that are already part of region. This vector is then projected onto the face.

6.2 Vector Field Continuity and Piecewise Approximation for Vector Fields on Meshes

Once the vector values are obtained at the vertices, we use a piecewise interpolation scheme to construct a continuous
vector field on the mesh surface. Unfortunately, the piecewise linear approximation that we have used in the planar
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Fig. 15. This figure illustrates that the piecewise linear representation does not produce continuous vector fields on mesh surfaces. The vector values
are zero atA, B, C, andD. The vector value atO is in the direction of

−→
OC (a). The piecewise linear representation and vector field consistency along

edgeOD andOBeventually lead to vector field discontinuity along edgeOA (c and d). In contrast, our piecewise interpolation scheme (Section 6.2)
produces a continuous vector field (e), which corresponds to a family of non-intersecting and spacing-filling trajectories in the1-ring neighborhood
of O (b).

case does not produce consistent vector fields on mesh surfaces. Figure 15 illustrates the problem for a vertexO and
its 1-ring neighborhood (a). The vector values are zero atA, B, C, andD, andV(O) is in the direction of

−→
OC. With

the piecewise linear representation, the vector values at the midpoints of edgeOD andOB are fixed (c). Due to the
continuity constraints across edges, the vector values at the middle pointsOA in triangle4ODA and4OAB lead to
inconsistencies (d). The problem is due to the angle deficit caused by the discontinuity of tangent planes at the vertices
and across the edges. However, we need consistent vector fields for compute and control over vector field topology.

For planar domains, the concept of vector field continuity is well-defined because any two vectors can be compared
regardless their locations. This is no longer true for a general surface since the tangent planes at different locations
are distinct and there is not an obvious and consistent way to correlate them without a global parameterization. Fur-
thermore, the tangent planes of mesh surfaces are often discontinuous across the vertices and the edges. Stam [2003]
addresses the problem by using a subdivision surface, whose tangent planes are continuous everywhere. However, for
most geometric processing operations, subdivision surfaces incur higher computational costs than polygonal meshes.

In this section, we describe an interpolation scheme that is guaranteed to produce a continuous vector field directly
on mesh surfaces. This scheme is a generalization of the piecewise linear representation from the planar case, and it
allows fast and efficient analysis and editing of vector fields on meshes. Before describing the scheme, however, we
first need a definition of vector field continuity for mesh surfaces.

Recall that for a smooth vector field, a point is either a singularity or a regular point. We can always define
singularities for surface vector fields because zero vectors can be identified regardless of locations. In addition, the
flow-box theoremfor Ordinary Differential Equations gives us a picture of what happens near a regular point [Hale
and Kocak 1991].

THEOREM 6.2. Let V be a smooth vector field defined inD ⊂ Rn. If p0 ∈ D is a regular point ofV, then there
exists a neighborhoodU of p0 and a homeomorphismh : U → Rn which carries each piece of a trajectory lying on U
onto a straight line ofRn parallel to theX-axis.

In other words, near a regular point, it is possible to warp the space such that the nearby trajectories are parallel and
space-filling. We propose to use this property as the definition forvector field consistency(continuity) for a regular
point on mesh surfaces. Notice that the flow-box theorem is true even when the vector fieldV is only Lipschitz-
continuous[Calcaterra and Boldt 2003], which is a stronger condition than continuity, but weaker than smoothness.
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Basically, A vector fieldV over a domain is Lipschitz-continuous if there exists a constantK such that for anyx,y in
the domain,|V(x)−V(y)|< K|x−y|. We propose the following definition:

DEFINITION 6.3. Let V be a vector field defined on a mesh surfaceM . V is consistentat a pointp0 ∈M if one of
the following situations is true:

(a) For anypath γ : [0,1)→ M such thatV(γ(t)) is well defined for anyt ∈ [0,1) andlimt→1 γ(t) = p0, we have
limt→1V(γ(t)) = 0. In this case,p0 is asingularity.

(b) There exists a neighborhoodU of p0 and a homeomorphismh : U →R2 which carries each piece of a trajectory
lying in U onto a straight line inR2 parallel to thex-axis. In this case,p0 is regular.

In other words, a consistent vector field on a mesh surface should exhibit the same local behaviors as those defined
in a plane. Notice in this definition, we require continuity at singularities, and unique solvability at regular points.
Unique solvability refers to the fact that for any pointp0, there exists a unique solution to the differential equation
induced by the vector field. Observe that as curves on a continuous surface, it makes sense to discuss the continuity
of the trajectories of a vector field. Figure 15 (e) illustrates the result of our interpolation scheme to be described next
(compare this to d). Notice that this scheme leads to a family of non-intersecting and space-filling trajectories in the
1-ring neighborhood ofO (b).

6.2.1 Piecewise Approximation.For every vertex in the mesh, we record its surface normal and the coordinate
system for the tangent plane. This allows us to easily transform a tangent vector from its local coordinates to global
coordinates.

A vector fieldV on a mesh surface is represented by assigning tangent vectors{W1,W2, ...,Wn} at the mesh vertices
{v1,v2, ...,vn}. For eachWi , we maintain its local coordinates for vector field design and 3D coordinates for display.
We cannot simply perform interpolation ofWi ’s since they are in general not co-planar. Furthermore, without a surface
parameterization, tangent vectors that are defined at different vertices are not correlated. To overcome these problems,
we first define a local parameterization for the1-ring neighborhood of a vertexvi . This parameterization allows the
parallel transport ofWi to any pointp insidevi ’s 1-ring neighborhood. Letµi be such transport function (which we will
soon describe). Then, for a pointp inside a triangleT = {vT1,vT2,vT3} whose barycentric coordinates are(α1,α2,α3),
Equation 5 can now be rewritten as the weighted sum of the tangent vectors that are parallel transported from the three
vertices:

V(p) =
3

∑
j=1

α j µTj (WTj ,p) (10)

Let us considerVi , the vector field that is constructed according to Equation 10 under the assumption thatWj = 0 for
every j 6= i. We haveV = ∑n

i=1Vi . NoticeVi is zero outside the1-ring neighborhood of vertexvi . As we will see soon,
Vi is a consistent vector field over the mesh surface for everyi, and so isV. Before we describe the parameterization
and the transport function in detail, we need the following definitions [Polthier and Schmies 1998].

DEFINITION 6.4. Let M be a polyhedral mesh representing a closed curved surface. Letv be a vertex with incident
trianglesTj ( j = 1, ..n), andθ j be interior angle ofTj atv. Then

(1) thetotal vertex angleat θ(v) is given byθ(v) = ∑n
j=1 θ j .

(2) 2π − θ(v) is the Gaussian curvatureat v. A vertex v is calledEuclideanif has a zero Gaussian curvature;
otherwise, it isnon-Euclidean.

Let r = θ(v)
2π . Notice thatr = 1 for vertices with a zero Gaussian curvature. There are two ways of measuring angles

between two rays emanating from a vertexv. The first is theEuclidean angle, which is the angle measured on the mesh.
The second angle is thenormalized angleas measured in the tangent space (each ray corresponds to a tangent vector).
The normalized angleα is related to the Euclidean angleβ by β = rα [Polthier and Schmies 1998]. Figure 16 provides
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Fig. 16. This figure illustrates the idea of parallel transporting a tangent vectorWi from a vertexvi = P to a pointK insideP’s 1-ring neighborhood,

R. First, we build a local parameterizationρ for R. Then,WP is parallel transported toK along the ray
−−−−−−→
ρ(P)ρ(K). This construction guarantees the

vector field consistency on mesh surfaces.

an illustration. In the left portion,P = vi is a vertex with the tangent planeTMP (right). Its 1-ring neighborhoodR
consists of the triangles4PQ1Q2, 4PQ2Q3, ..., and4PQnQ1 (n = 4). Let θ j = ∠Q jPQ j+1. Thenθ(P) = ∑n

j=1 θ j

andr = θ
2π . In the right portion, letD be the unit disc inTMP and letρ be the following homeomorphism fromR to

D.

(1) ρ induces a bijective mapping between the boundary ofR and the boundary of the unit circle. For any point

M ∈ ∂R, ρ is a linear map from
−−→
PM to

−−−−−−−→
ρ(P)ρ(M).

(2) ρ is linear scaling on the angles between rays. If two rays emanating fromP have an Euclidean angle ofθ , then
the angle between their images (normalized angle) isrθ .

Note that this construction is similar to the “geodesic polar maps” used by Welch and Witkin [1994] for free-form
shape design, with a minor difference: in their setting the parameterization domain is a polygon, not the unit disc as
in our case. Polthier and Schmies [1998] have used similar maps to perform parallel translation on vectors over a
polygonal surface.

To transferWi to a pointK inside triangleQ jPQ j+1, we first locate the ray
−−→
PM that containsK . Let φ be the

counter-clockwise angle betweenWi and the ray
−−−−−−−→
ρ(P)ρ(M), then we defineµi(Wi ,p) as the vector atK such that the

angle betweenµi(Wi ,p) and
−−→
PM equalsφ . Furthermore,|µi(Wi ,p)|= |Wi |.

Basically, we have created a constant vector field (= Wi) inside the unit disk (Figure 16, right), which is then scaled
such that the magnitude is one at the origin and it linearly decreases to zero along each line segment connecting the
origin and a point on the boundary of the disk. Notice the resulting vector field is Lipschitz-continuous. Finally, the
scaled vector field is mapped to the1-ring neighborhood to obtainVi through parallel transport as described above.
Note that the distortion contained in the parameterizationρ is caused by the Gaussian curvature ofvi , and therefore has
an upper bound. This implies thatVi is also Lipschitz-continuous. As a result, vector field consistency (continuity and
unique solvability) is ensured. Intuitively, as a parameterization,ρ does not distinguish between points inside a triangle
or on an edge. Consequently, vector field continuity is automatically guaranteed there. Furthermore, the continuity of
ρ ensures the continuity of the resulting vector field at the vertices. For planar domains,r = 1 everywhere and this
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Fig. 17. This figure illustrates how to determine the location of a singularity inside a triangle under the piecewise interpolation scheme. Here,Q is
the only non-Euclidean vertex for the triangle.

approximation reduces to the piecewise linear representation (Section 4.2).
Our piecewise interpolation scheme induces a vector fieldW that is a continuous and non-linear inside each triangle

T minus three vertices. We can think of such a region as a triangle minus three arbitrarily small corners, each around a
vertex. Therefore,W can be seen as being defined over a hexagon that is arbitrarily close toT. Along each edge of the
triangle,W is linear in terms of length. Along the sides where the corners are cut,W is linear in terms of vertex angle.
Locating singularities ofW is rather difficult under this setting. Furthermore, the Poincaré index for a hexagon can be
±2, which implies possibly two linear singularities or one second-order singularity insideT. This makes topological
control more difficult. To overcome these difficulties, we perform a four-fold triangle subdivision for the input mesh.
Basically, the mid-point of every edge in the original mesh becomes a new Euclidean vertex since it total vertex angle
is 2π. This means every triangle in the subdivided mesh can have at most one non-Euclidean vertex, and analysis
becomes more tractable. From now on, we will assume the input mesh already satisfies this requirement.

6.2.2 Analysis.Our piecewise interpolation scheme results in a non-linear vector field inside a triangle, which
requires new ways of computing the Jacobian, curl and divergence, and singularities and separatrices. In this section,
we provide solutions to these issues. LetT =4QRSbe a triangle with exactly one non-Euclidean vertexQ. Then the
vector fieldV as constructed in Equation 10 is linear onRSand along any ray emanating fromQ. Furthermore,W is
a continuous vector field defined onT minus an arbitrarily small corner nearQ, i.e., a quadrilateral as illustrated in
Figure 17. LetVR = V(R) andVS = V(S) be the vector values atR andS, respectively. AtQ, we need a direction to
determine the vector value. LetW denote the vector field ofV along an arbitrarily small line segment nearQ such that
WQR = W(QR) andWQS= W(QS) are vector values in the direction

−→
QRand

−→
QS.

Since the Jacobian is no longer constant insideT, we compute pointwise Jacobian through local approximation.
First, two pointsM1 andM2 are selected insideT such that they are sufficiently close toM0, and

−−−→
M0M1 and

−−−→
M0M2 are

not co-linear. Next, we build a linear vector fieldV ′ such thatV ′(Mi) = V(Mi) for i = 0,1,2. Finally, the Jacobian of
V atM0 is approximated by the Jacobian ofV ′.

Pointwise curl and divergence are computed from the Jacobian. On the other hand, the curl and divergence for a
triangle can be obtained accurately by calculating the divergence and curl along the three edges of the triangle. Notice,
the piecewise interpolation scheme that we described in this section is linear along these edges. LetNe andDe be the
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Fig. 18. Flow rotations are applied to a vector field on a sphere. Top row, from left to right are rotations of0, π
4 , π

2 . Flow reflection is applied
to these vector fields to produce corresponding images in the bottom row. Observe that flow rotations maintain the number, the location, and the
Poincaŕe index of the singularities. On the other hand, flow reflection maintain the location of singularities while negating the sign of their Poincaré
indices.

outward normal and directional vectors on an edge e, then we have the following results:

curl(T) =
(WQR+VR) ·N−→

QR

2
|−→QR|+ (VR+VS) ·N−→RS

2
|−→RS|+

(VS+WSQ) ·N−→SQ

2
|−→SQ| (11)

div(T) =
(WQR+VR) ·D−→

QR

2
|−→QR|+ (VR+VS) ·D−→

RS

2
|−→RS|+

(VS+WSQ) ·D−→
SQ

2
|−→SQ| (12)

Note that the total curl and divergence is zero for any closed 2-manifold. By construction, our piecewise interpola-
tion scheme maintains this property for mesh surfaces by construction.

The Poincaŕe index of a triangle is computed for a quadrilateral as illustrated in Figure 17. Along each side, the
vector field continuously and monotonically interpolates the vector values at the end points. Let us considerWQR

andWQS as vector values defined at the ends of an arbitrarily small edge. The total index angle is in(−4π,4π),
which implies thatT can have at most one linear singularity. The piecewise interpolation scheme maintains the
Poincaŕe-Hopf theorem, and our numerical results support this. If the Poincaré index ofT is not zero, there must be
a singularity inside. To locate the singularityP, we perform a binary search for a pointM ∈ −→RSsuch thatVM = V(M)
andWQM = W(QM) are co-linear and they point in opposite directions. LetWQM =−αVM, thenP = (1−m)Q+mM
(m= α/(α + 1)) is the singularity. The Jacobian atP is used to determine its type, and in the case of a saddle, the
incoming and outgoing directions.

The Runge-Kutta method that we used for computing separatrices for planar vector fields (Section 4.2) can be
adapted to mesh surfaces. Polthier and Schmies have also suggested a fourth-order Runge-Kutta method for computing
trajectories for a continuous vector field on mesh surfaces [1998]. Figure 18 show some examples vector fields on a
sphere along with their topological skeletons. The analysis is performed using the piecewise interpolation scheme that
we have described in this section.

6.3 Editing Operations

While the main concepts for editing operations on a surface remain the same as those for planar domains, some changes
need to be made to reflect the differences in vector field representation and the complexity of the surface geometry
such as curvature and higher genus.
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Fig. 19. Painterly rendering of a human eye image through vector field design. The input vector field was created using our system (lower-left).
The high-quality van Gogh-style rendering (right) was produced off-line with the approach of Hays and Essa [2004].

To perform flow rotation on a mesh surface, we simply rotate the vector valuesWi ’s in the tangent planes at each
vertex. Since the transport functions are orthonormal transformations between the tangent planes (Section 6.2.1),
rotatingWi ’s by an angle ofθ results in a rotation of the same angle inside every triangle and edge. Therefore, flow
rotations maintain the number, the location, and the Poincaré index of the singularities. Furthermore, for any point
inside a triangle, Equation 6 remains valid. In contrast, flow reflection requires that local frames and reflection axes at
every vertex be correlated. We make use of a global polar map to parallel transport this information. Global reflection
negates the sign of the Poincaré indices. In addition, it may create some additional singularities due to the singularities
in the fields of local frames and the field of reflection axes. Regardless of these issues, the resulting vector field still
satisfies the Poincaré-Hopf theorem. Figure 18 illustrates the effects of flow rotations and reflections on a vector field
defined over a sphere. The original field (left) is first rotated byπ

2 (middle), then reflected (right). Compare this figure
with Figure 6.

Similar to the planar case, flow smoothing on a surface vector field is carried out by performing vector-valued
smoothing inside a user-specified region. We have implemented two variations of flow smoothing for meshes. In
the first variation, we perform vector-valued smoothing to the original vector field as a 3D vector field and project
the resulting vector field onto the surface. The second approach parameterizesR based on some planar domains
and perform smoothing in this domain. Both smoothing techniques provide similar results. However, theoretically
speaking, the second approach seems more natural for vector-valued smoothing on mesh surfaces.

7. APPLICATIONS

All the vector fields shown in this paper are created with our system. In addition, we have applied our vector field
design system to several graphics applications: painterly rendering of images, pencil sketch illustration of smooth
surfaces, and example-based texture synthesis.
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Fig. 20. Another example of painterly rendering based on vector field design: a cat’s face. The high-quality impressionistic image shown in the
right was also produced off-line with the approach of Hays and Essa [2004].

7.1 Painterly Rendering

Painterly rendering refers to creating digital images that have the appearance of being painted. There are numerous
published approaches to painterly rendering, and to review them all is beyond the scope of the paper. These techniques
have focused on providing the user with control over certain aspects of brush strokes (textures, styles) while automat-
ically determining other aspects (base colors and orientations). In particular, image-based gradient fields have often
been used to guide the orientation of brush strokes. While this may be appropriate for some parts of the image (near
the feature lines), it often produces brush strokes with noisy orientations in areas with nearly uniform colors. Further-
more, it creates unnecessary constraints on the way that artists may express themselves. Our goal for this application
is to let the user control the brush stroke orientation through vector field design.

We use a level-of-detail approach by Hertzmann [1998]. In this approach, a painting is created in a series of layers,
starting with a rough sketch drawn with brush strokes of a large size. Then the sketch is painted over with brush
strokes of gradually decreasing sizes at places where signals of higher-frequencies are present. This approach is very
fast and has a high quality. However, we make the following modification: instead of using the image gradient field to
guide the brush stroke orientations, let the user create a synthetic vector field with our vector field design system. To
make this task fast and effective, we incorporate the painterly rendering algorithm into our vector field design system.
In addition to viewing the vector field, the user can also switch to the painterly rendering that uses the current vector
field. The results are interactively displayed as the user makes changes to the vector field. Figure 19 and 20 show the
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Fig. 21. We have applied vector field design to non-photorealistic illustration of 3D surfaces. The pencil style illustration is based on van Wijk’s
image-based flow visualization technique [2003]. The vector field used for the dragon image in the lower-right was obtained by rotating the vector
field from the lower-left byπ

3 .

painterly rendering results for two source images: a human’s eye (Van Gogh style) and a cat face (impressionism).
For the human’s eye, a center element was placed at the middle of the pupil and a saddle element was placed at the
corner of the eye. Two regular elements were placed along the eyebrow to ensure that the brush strokes do not cross
the feature. With five elements, a vector field (lower-left) was produced that matches the main features of the image
(the eye and the eyebrow). For the cat’s face, two center elements of opposite orientations were placed at the middle
of each eye. A saddle element was placed underneath the nose and six regular elements were placed along the ears
and the chin. The final high-quality painterly images in both figures were created off-line using the algorithm of Hays
and Essa [2004].

7.2 Non-Photorealistic Illustration of Surfaces

There has been much work in creating hatch-based illustrations of surfaces, and to review all of them is beyond
the scope of this paper. Girshick et al. [2000] have shown that the principle curvature fields are good at conveying
shapes. Traditional techniques often make use of principle curvature directions to guide the hatch field. Hertzmann
and Zorin [2000] present an efficient algorithm for approximating the principle curvature fields over the mesh by local
surface fitting, which leads to a high-quality pen-and-ink style of rendering of 3D shapes. Praun et al. [2001] treat the
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Fig. 22. This figure shows the results of applying our surface vector field design system to texture synthesis. Two vector fields are used for each
model: the bunny, and the feline. Notice that singularities lead to the breakup of the synthesis patterns (upper-right). Also, the spirals around these
singularities are obvious in the synthesis result. For anisotropic textures, different vector fields lead to different visual appearances (compare the
bunny images and the feline images, respectively).

problem of hatch-based illustration as performing texture synthesis on surfaces, which leads to a real-time hatching
system in which the user has the option to guide the orientation of hatches with a vector field on a 3D model. Van
Wijk [2003] applies his image based flow visualization technique to curvature fields to produce non-photorealistic
illustrations of 3D surfaces. Similar to the image gradient field, the principle curvature fields are rather noisy for
regions where the principle directions are not prominent.

In this work, we allow the user to guide the hatch field through vector field design. Figure 21 shows the results of
applying this technique to various 3D models. The vector field used for the dragon model in the lower-right image was
obtained by rotating the vector field from the lower-left image byπ

3 .

7.3 Example-Based Texture Synthesis

Example-based texture synthesis refers to creating patterns on surfaces based on a given input image of a texture.
Praun et al. [2000] propose “lapped textures” in which the surface is partitioned into overlapping regions and each
region receives a portion of the input image. This method is fast, but causes seams due to surface partition. For
textures that contain only high frequencies, the seams are relative unnoticeable. Another class of methods [Turk 2001;
Wei and Levoy 2001] perform synthesis on surfaces directly without creating seams. For any point on the surface,
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its color is copied from the pixel in the same image that provides the best neighborhood match based on a distance
criterion. For both types of synthesis methods, a vector field is used to provide local orientation and scale as well as to
determine the synthesis order.

Figure 22 shows the results of applying our vector field design system to texture synthesis on the bunny and the
feline. The texture synthesis method is based on [Turk 2001; Wei and Levoy 2001]. The two vector fields used for the
bunny are: a sink element at the tail and a source element on the forehead (upper-left), and aπ

3 rotation of a dipole (a
source element and a sink element) on the visible side of bunny (upper-right). Notice that the spiraling in the second
vector field near the singularities on the side of the bunny is evident in the texture in the upper-right image. Figure 1
shows the visualization of these vector fields (middle and right). The bottom row of Figure 22 shows the feline with a
tiger stripe pattern that is guided by two different vector fields. Both vector fields lead to reasonable results.

8. CONCLUSION AND FUTURE WORK

Vector field design on surfaces is an important problem that has received relatively little attention. We have identified
a number of graphics applications, such as non-photorealistic rendering and texture synthesis, for which a vector field
design system is needed. We also propose a set of requirements for a vector field design system. Namely, the user can
create a wide variety of vector fields (not some sub-class) with relative little effort. Also, the user has control over the
number and location of the singularities.

We present a vector field design system for both planar domain and 3D mesh surfaces. To our knowledge, this is
the first system that produces continuous vector fields on mesh surface and provides control over vector field topology.
The system has a three-stage pipeline: creating an initial vector field, analysis, and editing. The editing operations
are at the core of our system. To make the system fully functional, we have introduced algorithms to resolve several
problems. Many of these problems are challenging by themselves.

(1) The piecewise interpolation scheme for vector fields on mesh surfaces is novel, and it enables efficient vector field
analysis and editing on meshes. To our knowledge, existing singularity pair cancellation techniques work only for
planar domains.

(2) We describe a new technique to construct surface basis vector fields based on the concept ofgeodesic polar maps
andparallel transport.

(3) We allow the user to control the location of singularities by a novel singularity movement operation. Furthermore,
we provide a unified framework for implementing both singularity pair cancellation and singularity movement
based on Conley index theory, which is more general and powerful than the well-known Poincaré index. To our
knowledge, this is the first time Conley index theory is applied to Computer Graphics. Furthermore, the region
optimization technique that we describe helps to produce smooth vector fields after editing operations.

(4) We use flow rotations and reflections to overcome numerical instabilities associated with regions of high curl and
regions near saddles, which allows control over any linear singularities.

There are a number of issues that we wish to improve upon our current system. First, our system uses the same
decay constantd for all design elements for creating basis vector field (Equation 3 and 4). It may be desirable to let
the user control this. Second, our algorithm for building isolating blocks sometimes produces regions that are larger
than necessary. This means that the behavior of the flow may be changed at places that are far away from the user-
specified singularities. We plan to investigate ways of restricting the size of such regions. Third, our system requires
the user to specify the pair of singularities for cancellation. It would be nice to provide the functionality “automatic
singularity pairing for elimination”, in which the user specifies one singularity to be removed and allow the system
to determine another singularity for pair cancellation. Finally, our surface vector field design system currently only
handles closed surfaces. Surfaces with holes may cause incorrect results when computing geodesic polar maps, and
we use hole-filling techniques to remove these holes. It is desirable to consider other approaches in which surfaces
with holes can be handled directly without the filling.
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There are several possible areas of future research. So far we have focused on controlling singularities in a vector
field. It is natural to ask for controls over separatrices and periodic orbits, which are also part of vector field topology.
Can we extend the concept of singular elements and allow the user to create canonical separatrices and periodic
orbits? What editing operations are necessary to edit them? Finally, and maybe more fundamentally, what graphics
applications will benefit from these operations?

Singularity pair cancellation can be seen as performing a particular type ofbifurcation if one tracks the continuous
change that is involved. Many other types of bifurcations exist. They are interesting mathematically, and they also
have applications for scientific visualization.

Vector field design for surface might be extended to handle vector fields defined for volumes or other higher-
dimensional datasets. Also, we are interested in identifying other applications for vector field design, such as fluid
simulation and hairstyle design. Fluid simulation will require a vector field design to be able to create wavy functions
as well as time-dependent flows.

Another important application is for educational purpose in which students learn important concepts of vector fields
through creating and manipulating vector fields and observing the changes.
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