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Abstract

We introduce and analyze a detailed biophysical model of the control of the lac operon. The model
connects two spatial scales: the biophysical parameters of molecular interactions at a molecular
scale and the resulting expression level of lac genes measured on the cellular level. We param-
eterize the model to the extent possible and find parameter bounds for 19 other parameters. We
optimize a least square fit between the model predicted and experimentally determined repression
values. We find that the standard model, based on the four basic mechanisms involved in the lac
operon regulation, is not able to match the repression data. However, a larger model which includes
an additional six biologically suggested mechanisms fits data well. We find several local minima
which provide a very good fit to data, but require that the bending energy of a short DNA loop is
smaller than predicted from tethered particle experiments. We conclude with a study of robustness
of our fit in the parameter space.
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Introduction
The primary goal of this paper is to create a mathematical model of the control mechanism of the
lac operon. We are faced with three challenges that are typical of many modeling efforts in the
life sciences: (1) we need an understanding of the underlying biochemistry and biophysics, (2) we
need to determine relevant parameter values, and (3) we need to be able to compare the predictions
of the model against appropriate experimental results. In most situations none of the challenges
is completely overcome. Nevertheless, and this is one of the consequences of this work, building
a model that is as coherent as possible based on partial results can shed insight into which of the
three challenges is most pressing for furthering our understanding.

The lac operon in E. coli controls the expression of proteins β-galactosidase, permease and
transacetylase, which are responsible for lactose uptake and digestion. It is one of the most ex-
tensively studied gene regulatory systems, both experimentally and theoretically, and thus there is
a relatively good understanding of the main biochemical and biophysical components of the lac
operon control. Hence with regard to challenges (1) and (3) this an ideal system to study. The lac
genes are expressed only when the lac repressor is not bound to its primary site, O1; its ability
to bind DNA is impaired when an inducer, which signals presence of lactose or a lactose analog,
binds the repressor. The up-regulation of the lac expression is achieved by cooperative binding of
the CAP protein and RNA polymerase (RNAP). Another well known cooperative feature is that a
repressor bound to O1 can simultaneously bind an additional site (either O2 or O3), which causes
looping of the DNA and more durable repression. In addition to these well understood control
parts, there are other control features, discussed more extensively in the Model section, which
have been suggested to contribute to the function of the lac operon. This information allows us to
construct a comprehensive mathematical model. Furthermore, Oehler et al. (1) have experimen-
tally obtained repression data for various knockouts and permuted binding sites and thus we have
an extensive experimental data set against which we can test our model.

With regard to challenge (2) many of the parameters of interest have not been experimentally
measured. To address this issue we adopt, in the Parameter selection and optimization section,
the following strategy. We begin by noting that there are a handful of parameters which can be
computed directly from the existing experimental literature. For the rest of the parameters we
begin by determining reasonable bounds. We then perform a constrained optimization to fit these
remaining parameters by minimizing the distance between the repression levels predicted by the
model and the repression data of (1).

At this point we are in a position to interrogate the model as is done in the Results. In particular
we show that the comprehensive model fits the data better than a smaller standard model, which
takes into account only the main lac control mechanisms mentioned above: binding of the repressor
and its looping, impairment of this binding by the inducer and CAP induced up-regulation. The
optimization procedure finds several local optima which produce a very similar fit. The question
of how we interpret and understand such results is closely related to the question of robustness of
model predictions to change in parameters. We view all of these optima as informative solutions
and try to find common features that all of them share. The majority of parameter sets that differ
from the local optima in each component by one or two standard deviation still produce good
fits, suggesting robustness of the fit in the parameter space. However, the parameters cannot be
arbitrary. We find that all parameter sets at local minima share the following property: the looping
energies for at least one of the short DNA loops are predicted to be lower than the values reported
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from in vitro experiments.

Model
We begin by reviewing the main control mechanisms for lac operon. The segment of DNA con-
taining both the lac repressor coding region and the lac operator is indicated in Fig. 1. Starting
from the left are the RNAP binding site, Pi, followed by the gene lacI, which codes for lac repres-
sor. The lac repressor is constitutively expressed. Next is the lac promoter region, Plac, which is
immediately followed by the lac genes lacZ, lacY and lacA. It is the combinatorial control of the
lac genes expression at the Plac region that is a subject of this paper.

Figure 1 about here

We highlight the following biochemical processes that we explicitly incorporate into our math-
ematical model. Note that the first four are related to the standard model for lac operon (2).

1. The lac genes are expressed when the O1 operator is not bound by a repressor and RNAP
binds the promoter.

2. The lac repressor’s ability to bind the DNA is impaired when an inducer such as allolactose
(but also allolactose analogs IPTG or TMG) binds the repressor.

3. A protein complex called catabolite activator protein (CAP) up-regulates gene expression
when it binds to C1 on the promoter region of the DNA.

4. The lac repressor binds any of the operator sites, O1, O2, or O3, with decreasing affinity.
Furthermore, being a tetramer with two DNA binding domains, a single repressor can bind
any two operators simultaneously, looping the DNA.

5. An additional RNAP binding site P2, weaker than P1, leads to transcription as long as the
O1 operator is free from repressor (3).

6. It has been suggested that when CAP is bound to C1, the repressor may bind more favorably
to an operator O3* than to O3 (4, 5), where the O3* site is overlapping the O3 operator in
all but five DNA base pairs.

7. CAP assisted looping is a cooperative mechanism which reduces the energy of forming a
DNA loop between the O3 or O3* operator and another operator when CAP is bound to C1.
For example, the energy for looping O1 to O3 is lower when CAP is bound to C1 (5–7).

8. C1-O3 steric interference is a negative physical interaction between a CAP bound at C1 and
a repressor bound at O3 (4, 5, 8).

9. It is not known if an inducer-impaired binding domain of a repressor is unable to bind the
DNA, or whether this ability is only impaired. In our model we allow such binding, although
the affinity is reduced in comparison to an unimpaired binding domain.
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10. Finally, since in the experiments of Oehler et al. (1, 9) (described in detail below) the deleted
binding sites were not physically removed, but only mutated, we also allow a repressor to
bind these deleted sites, albeit at a reduced affinity.

A more detailed description of these processes is presented in the Supplement, Section S.1.
The standard model for gene regulation focuses on the combinatorial binding of the regulatory

proteins to the DNA (10). The binding and unbinding of the regulatory factors is governed by
a stochastic dynamical process which evolves on a much shorter time scale than the changes in
the concentration of these factors. Using this difference in time scale we assume that the concen-
trations are fixed and that the binding and unbinding reactions are at statistical equilibrium. We
assume a finite collection S of states and the model makes use of the equilibrium probability of
occurrence of each state. This approach is a broadly accepted quantitative framework for modeling
transcription (11) and has been experimentally validated on a variety of genes (12–16). A state s
of the operon is a particular configuration of transcription factors (or their absence) on the DNA,
that is admissible in view of possibly overlapping binding sites. The probability of the occurrence
of a particular state s from the set of admissible states S is

Ps :=
Ks[RNAP ]αs [CAP ]α

1
s [R]α

2
s [R′]α

3
s

Z
(1)

where Ks = exp(−E(s)/RT ) is the equilibrium constant and Z is the partition function

Z =
∑
s∈S

Ks[RNAP ]αs [CAP ]α
1
s [R]α

2
s [R′]α

3
s . (2)

In these formulas E(s) denotes the change in Gibbs free energy between the empty state s∅, where
nothing is bound to the DNA, and the state s ∈ S under the normalization E(s∅) = 0. The expo-
nents αs, α1

s, α
2
s, and α3

s represent the number of bound molecules of RNAP, CAP, the unimpaired
lac repressor R, and the repressor with one free binding domain R′, in state s, respectively. As is
standard, RT denotes the universal gas constant times the temperature (17). Note that the universal
gas constant will only appear as a part of a product with the temperature T , so all other occurrences
of R in this paper refer to the repressor. Observe that not all combinatorial configurations are in
S. When, for example, RNAP binds the P1 region, it also overlaps a portion of the P2 region, and
vice versa. Therefore two RNAP molecules cannot simultaneously bind P1 and P2 and therefore
S does not contain a state with both promoter regions occupied by their own RNAP molecule.

Since the only states compatible with transcription are those in which the promoter is bound
by RNAP, we assign to each RNAP-bound state s a rate of a transcription ks from that state. Then
the overall rate of transcription for the lac promotor is given by

f :=
∑
s

ksPs =
1

Z

∑
s

ksKs[RNAP ]αs [CAP ]α
1
s [R]α

2
s [R′]α

3
s . (3)

To evaluate this expression we need to know the set of states S, and for each individual state s
the energy Ks and the rate ks, along with the concentrations of RNAP, CAP, R and R′. This is
discussed in greater detail in the next section.

We do not know of any direct experimental measurements of transcription rates of the lac
promotor and thus we test our model against data obtained by Oehler et al. (1) (Supplemental
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Table S.6). Their work reports the value of repression for a series of mutants of lac operon.
Repression is the ratio of β-galactosidase activity recorded for cells exposed to 1 mM concentration
of inducer IPTG over the activity at 0 mM IPTG,

Rp =
β-galactosidase(1mM)

β-galactosidase(0mM)
. (4)

IPTG binds to the repressor R which affects the concentrations [R] and [R′] and thus the rate of
transcription f can viewed as a function of IPTG. In order to compute the repression in our model
we assume that β-galactosidase activity is proportional to the β-galactosidase protein concentration
in the cell, and that neither the translation from mRNA to protein, nor the degradation of protein
or mRNA are affected by IPTG. Then β-galactosidase activity is proportional to the transcription
of mRNA, thus

Rp =
β-galactosidase(1mM)

β-galactosidase(0mM)
=
f(1mM)

f(0mM)
. (5)

We use this equation to model lac operon repression.

Parameter selection and optimization
In order to evaluate expression (3), which is necessary for the repression calculation, equation (5),
we must determine equilibrium constants Ks and transcription rates ks for all equilibrium states
s along with the concentrations of RNAP, CAP, R and R′. The determination of these values
represents a significant portion of the work reported in this paper.

Our model has 648 states each of which can have a different equilibrium constant Ks and thus
different free energyE(s). However, these energies can be computed from free energies associated
to a much smaller set of elementary states, corresponding to the binding a single element to its
binding site, as well as cooperative energies between elementary states. In this approach, the free
energy of a state E(sab) in which both elements A and B are bound to the DNA at the same
time need not be the sum of the free energies of binding protein A and B separately. This energy
difference is referred to as cooperativity and defined by ∆GAB := E(sab)−(∆GA + ∆GB), where
∆GA = E(sa) and ∆GB = E(sb) are free energies of binding protein A and B individually to
the DNA. Cooperativity can be positive or negative. In the lac operon, the cooperativity is known
to exist only between pairs of elementary states, even though in theory there can be higher order
cooperative effects between more than two states.

In Table 1 we list the parameter values that we are able to determine from the existing litera-
ture. KP1 and KP2 are the binding constants of RNAP binding to their binding sites P1 and P2
respectively, while [CAP] and [RNAP] denote concentrations of CAP and RNAP in a typical E.
coli. The constant KP1C1 captures the cooperative lowering of the binding energy when CAP is
bound to C1 and RNAP is bound to P1. RT is the universal gas constant time temperature. The
different values of the last two constants, kf and kfC1 reflect the fact that the cooperativity between
CAP bound to C1 and RNAP to P1 not only affects the binding energy, but also increases the tran-
scription initiation rate. Therefore we use the transcription rate kfC1 for all states that include CAP
bound to C1 and RNAP to P1, and the rate kf for all other states. The computation of these values
as well as our sources can be found in the Supplement, Section S.2.

Table 1 about here.
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The remaining parameter values presented in Table 2, are computed by our optimization pro-
cedure detailed below. Table 2.A provides information about the free energy associated with ele-
mentary states, Table 2.B about the looping energies (explained below), and Table 2.C about the
cooperativity effects.

To initiate the optimization procedure we must first determine bounds on all parameters in Ta-
ble 2. To obtain bounds on free energies associated with the elementary states (Table 2.A) we used
the work of Horton et al. (18) which reports the contribution of each base pair in the O1 operator
to the overall binding energy between the O1 operator and a repressor. We use the sum of the
reported mean contributions of each base pair as our estimate of specific binding energies ∆Gspec

∗
for all operators, based on their individual DNA sequences. Summing the error bars reported in
Horton et al. (18) across all base pairs we arrive at upper and lower bounds of overall specific
binding energies. As an example, our bound on ∆GO1 has the form ∆GO1 := ∆Gns + ∆Gspec

O1

where

∆Gspec
O1 ∈ [−3.615− 4.125,−3.615 + 2.125] = [−7.740,−1.490] kcal/mol.

In addition, we take into account a non-specific, basal binding energy, ∆Gns, between a repres-
sor and the DNA. This energy does not depend on the DNA sequence of a particular binding site.
Total binding energy between the repressor and a particular operator is then a sum of ∆Gns and
the specific energy of that operator. We selected the bounds for ∆Gns to be [−7,−13.1] kcal/mol,
a range taken around the −9.7 kcal/mol cited in Horton et al. (18). We optimize separately the
specific binding energies and the basal binding energy ∆Gns.

The DNA loops form when a repressor is simultaneously bound to two operators. The energy
corresponding to the equilibrium constant Ks (in equation (3)) for this state will have an additional
looping energy ∆GOij , where Oij represents the loop between operator i and operator j and i, j ∈
1, 2, 3, 3∗. The looping energy thus enters the equation in the same way as the cooperative energy
described above. Since the formation of the loops requires energy, we set the lower bound on all
looping energies, listed in Table 2.B, to zero. The loops formed by binding simultaneously to O1
and O3 and O1 and O3* are much shorter than the loops formed between the O1, O2 and the O2,
O3 sites. Since longer loops are easier to form, the upper bound for looping energy for longer
loops should be lower than those for shorter loops. The highest reported energy for a short loop
(80-250 base pairs (19)) is 17 kcal/mol, see Table 3. Therefore we set the upper bound on energy
for the short loops (∆GO13 and ∆GO13∗) to 17 kcal/mol. On the other hand, there are 401 base
pairs in the O1-O2 loop, and the length between O2 and O3 is even longer. Han et al. (20) measure
the looping energy associated with loops of length 300-310 base pairs and find the energy to be
10-11.5 kcal/mol. We therefore we set the upper bound on the energy for the longer O1-O2 and
O2-O3 loops to 13 kcal/mol.

Finally, we discuss bounds on cooperativity energies listed in Table 2.C. The energy ∆GC1loop

represents looping assistance by CAP bound to C1 (6) which helps formation of O1-O3, O2-O3
and O2-O3∗ loops and therefore is negative. We bound ∆GC1loop between zero and −7 kcal/mol,
a range taken around the value −3.1 kcal/mol suggested by (5). On the other hand ∆GC1O3 repre-
sents steric interference between CAP and repressor bound to O3 and is therefore positive, bounded
between zero and 10. The last entry in Table 2.C is the reduction in binding energy between the
repressor and any of operators when the repressor is bound by the inducer. ∆GI was bounded
between 5 and 11 kcal/mol with the constraint that ∆Gns + ∆GI < 3. These bounds are discussed
further in the Supplement Section S.2.8.2. Table S.7 contains exact bounds.
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Table 2 about here.

Having obtained upper and lower bounds for the parameters in Table 2, we search within this
bounded 19 dimensional hypercube B for the parameter values which produce the best fit to the
data presented in (1). Oehler et al. (1) construct a variety of lac operons by mutating the repressor
binding sites O1, O2, O3, or interchanging their positions on the DNA. For these modified lac
operons, they report repression in the presence of the repressor at approximately 5 times and 90
times that of the wild type concentration (for the reported values see Table S.6 in the Supplemental
Material). Since the repression values range from 1.3 to 8100 and we wish to weigh a two-fold
change of the first value (say, from 1.3 to 2.6) in the same way than a two-fold change of the second
value (from 8100 to 16200), we evaluate the least square fit in the log space

ξ =
∑
m∈M

√
(log(RD1(m))− log(RP1(m)))2 + (log(RD2(m))− log(RP2(m)))2, (6)

where M is the set of all mutants; RD1(m) and RD2(m) are the repression values from Oehler
et al. (1) for mutant m at 5×WT and 90×WT repressor concentrations respectively and RP1(m)
and RP2(m) are the model predicted repression values at the same concentrations (1). We do not
include the Oehler et al. (1) measurements for which there is only a lower bound measurements in
the cost function, but these inequalities are satisfied in all our optimized models.

Denoting the 19 parameter values in Table 2 by the vector ~x we use the MATLAB function
fmincon with the active-set algorithm to perform a constrained minimization of ξ over ~x.
In an attempt to explore the possible multiple local minima of ~x we initialize the minimization
at 20 different initial parameter vectors. In this set we include the vector containing the lowest
admissible value in each entry of ~x as well as the vector with the highest allowable value in each
entry of ~x. These represent two of the corners of B. We generate an additional eight random vectors
on the boundary of B, where each entry of ~x is either an upper or a lower bound for the particular
entry, and 10 random points from anywhere in the interior of B. The minimization is stopped when
the magnitude of the directional derivative in the search direction is less than 2×10−6 and the value
of ~x is not more than 1× 10−6 beyond the constraint. We discuss this optimization step further in
the Results.

Results
As indicated previously, we test our model against repression data for a series of lac operon mu-
tants obtained by Oehler et al. (1). They constructed lac operon mutants by mutating the repressor
binding sites O1, O2, O3, or interchanging their positions on the DNA, and measured repression in
the presence of the repressor at approximately 5 times and 90 times that of the wild type concen-
tration (for the reported values see Table S.6 in the Supplemental Material). In order to show the
fit of our model to their data, we represent each mutant of the lac operon as a 3-tuple. The first slot
represents the position on the DNA of the wild type (WT) O1 operator, the second slot represents
the position on the DNA of the WT O2 operator, and the third slot represents the position on the
DNA of the WT O3 operator. The numbers of the 3-tuple represent the DNA sequence present
in that slot: one for O1, two for O2 and three for O3. Using this notation, (1,2,3) is the WT lac
operon, and (2,2,0) is a mutant lac operon with the DNA sequence for O2 in the position of the
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WT O1 operator as well as in the position of the WT O2 operator, while the zero indicates that the
O3 operator has been ‘deleted’ (i.e mutated). The DNA sequences for the WT and deleted binding
sites can be found in the Supplemental Material.

In Fig. 2(a) we show predicted repression level curves as a function of the repressor concentra-
tion for each mutant along with the repression data from Oehler et al. (1). The repression curves
were obtained from our model based on the biochemical processes 1-10, using the optimized pa-
rameters shown in Table 2.

Figures 2a and 2b about here.

Observe that the only significant differences between our model and the reported data involves
the mutant (1, 0, 1) at both repressor levels and the mutants (1, 0, 3) and (1, 2, 3) at 90 times the
WT repressor levels. However, these are precisely the data points points at which (1) report that
their experimental procedure could only determine a lower bound on the actual repression value.
Thus it is possible that our model predicts the correct repression value.

As is indicated in the prior section, we performed an optimization procedure on 20 initial
conditions for the parameter vector ~x. Eleven initial conditions lead to local minima with the
values 0.51 ≤ ξ ≤ 0.56, three of which are within 0.0005 of the minimal value ξ = 0.5115.
The remaining nine initial values lead to a minima with values of 1.28 ≤ ξ ≤ 4.6. These results
suggest that the ~x landscape is relatively flat and the best solution depends only weakly on the
initial condition of the minimization. We return to this issue below. The best model with the value
ξ = 0.5115 is presented in Fig. 2a where we plot the repressor concentration in molar along the
x-axis and the repression value along the y-axis. The minimizing values of the parameters are in
Table 2.

A reasonable criticism of our strategy is that we used (1) to optimize the choice of parameter
values and thus the strong agreement is due to over fitting of the data. To provide at least a
partial rebuttal to this we considered a small model. As is indicated in Model section the standard
description of lac operon focusses on the biochemical processes 1-4. Thus we repeated the process
of optimizing the parameter values but only used the terms in equation (3) associated with 1-4.
The results are presented in Fig. 2(b). Clearly the fit is much poorer. We conclude from this that
the standard model is insufficient to explain the data.

Another reason for confidence in our model has to do with the internal consistency of the
optimized parameter values. It has been observed experimentally (9) that repressor binds O1 about
10 times stronger than O2, and a repressor binds O1 about 300 times stronger than O3 which is in
agreement with the values for ∆GO1, ∆GO2, and ∆GO3 reported in Table 2. Moreover, almost all
of the free energy values are strictly within the error bound determined from the data, see Table S.7.
The exceptions are the lower bound of O1 and O2 and the upper bound of O1−a, O3∗− and O3∗

which we had to adjust so that the locally optimal point ended up in the interior of the search
domain.

Figure 3 about here.

As a final internal test of our model we consider how robust our model is to small perturbations
in the parameter values. Recall that our minimization procedure produced eleven vectors of pa-
rameter values for which 0.51 < ξ < 0.56. We compute the standard deviation in each component
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of these vectors and then generate a set of 847 new vectors by changing one entry of each of the
original eleven vectors by zero, one or two standard deviations. The fit ξ is computed for each of
these vectors and the lowest 828 are presented in increasing order in Fig. 3 (the x-axis represents
the vector identity (1-828) and the y-axis is the value of ξ.) The vectors not shown have a cost
between 8 < ξ < 26; we exclude these vectors to improve presentation of the data. Note that there
is a sharp jump in the cost function at the value 1.31. This implies that there are vectors within one
or two standard deviation of the optimal solutions which yield a bad fit, however, the vast majority
(694 of 847 to be precise) have cost functions below this value. We present in the inset figure a
solution that has a fit of the cost ξ = 1.31, which represents the worst of the good fit solutions. At
first glance, the repression curves in Fig. 3 look like a reasonable fit, and the upper set of curves
are. However, this set of curves results from decreasing the ∆GO13 looping parameter by two
standard deviations, a change which is most noticeable in the (3,0,1), and (0,0,1) curves, each of
which is well above the measured values. In summary, it appears that the optimal solutions do not
lie in deep isolated wells of the cost function, and that the fit remains very good for a rather broad
collection of parameters.

Based on the arguments presented above we now adopt the perspective that our full model
successfully predicts the expression data based on the biophysics of the interactions and use it
to investigate energies associated with DNA looping. Determining the energy required to loop
the DNA between the O1 and O3 operators is an ongoing problem that is being addressed via a
variety of approaches. Based on the assumptions that as the energy needed for loop formation
decreases, the probability of loop formation increases, and an increase in loop formation correlates
to an increase in repression, (21–27) measured (in vivo) how the distance between operators affect
repression. Taking a different approach, (20, 28–30) performed tethered particle experiments (in
vitro) where a segment of DNA containing two operators is tethered to a flat plane on one end
and a bead is attached to the other. Finally, (5, 20, 30–33) have created and used mathematical
models based on the structure of the DNA to predict the energy of looping. The results of these
investigations for the short loop of length ∼ 90 base pairs, which is comparable to DNA loop
between O1 and O3, are summarized in Table 3.

Table 3 about here.

In Fig. 4 and Table 4 we present looping energy predictions from our model at eleven best
values of parameters, that correspond to ξ ≤ 0.56. The first value, ∆GO13, is the energy necessary
to form the short DNA loop between O1 and O3 when the repressor binds these two operators.
The second value ∆GO13∗ represents the energy necessary to form the short DNA loop between
O1 and O3*, where O3* is a shifted operator position for binding of the repressor in the presence
of CAP bound to C1. While the predicted energies vary between the solutions, we can see that the
typical values for ∆GO13 fall between 7.6-7.7 kcal/mol with the mean at 9.08 kcal/mol. While the
values for ∆GO13∗ have larger variance, both short looping values are frequently lower than the
bounds predicted by tethered particle experiments and models (See Table 4).

Figure 4 and Table 4 about here.

The variability of the predicted energies ∆GO13 and ∆GO13∗ brings up a question if these loop
energies are sufficiently constrained by the repression data, which our model uses to constrain the
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parameters. We performed an optimization procedure leading to the values in Table 4 within very
generous bounds - both ∆GO13 and ∆GO13∗ were only constrained between 0 and 17 kcal/mol,
while the other longer loops are constrained between 0 and 13 kcal/mol. To verify the robustness of
our conclusion that the short loop energies ∆GO13 and ∆GO13∗ are lower than previously reported,
we optimize the model with progressively higher lower bound on short loop energies. If these
energies are not constrained by our model, then we should not be able to find solutions that match
data as well as our best solutions with ξ = 0.5115.

Indeed, when we constrain the looping energies ∆GO13 and ∆GO13∗ between 11 to 17 kcal/mol,
we still find a very good fit, since our best solution had ξ = 0.6060. However, there were only
two minima with ξ ≤ 0.63, while there were eleven such values with broadly constrained looping
energy values. Furthermore, these optimization runs predict that either ∆GO13 or ∆GO13∗ or both
are at the lower bound of 11 kcal/mol in the optimization domain. This suggests that these energies
would be decrease further if the lower bound was not enforced. When we constrain the looping
energy even higher, with the lower bounds set to ∆GO13 = 16 kcal/mol and ∆GO13∗ = 14.7
kcal/mol which are the lower bounds for these energies predicted by a recent looping model (5),
the best fit from 20 initial conditions has value ξ = 1.2778. We show the repression curves and
parameter values for the lowest minima associated with these two datasets in the supplement,
Fig. S.1 and Tables S.10 and S.11.

These simulations confirm that the repression data do constrain the looping energies ∆GO13

and ∆GO13∗. This increases our confidence in the conclusion that both ∆GO13 and ∆GO13∗ are in
the range 6 − 13 kcal/mol which agrees with the lowest estimate in Table 3 by Czapla et al. (34).
Their DNA looping model is unique in that it includes the nucleoid protein HU. HU, found in E.
coli, binds the DNA non-specifically, causing a sharp bend in the DNA. By incorporating HU into
their model, the energy required to form short loop DNA configurations is lowered by the presence
of the kink resulting from bound HU. Our results indirectly support conclusions from their model.

Discussion
We have developed a comprehensive biophysical model of lac operon based on all the accepted, as
well as some suggested mechanisms of control of lac expression. We have parameterized the model
by experimental biophysical parameters to the extent possible and found experimental bounds
on the remaining parameters. This results in a compact space of potential parameter values in
which we optimize the fit to the existing repression data. We find that even after optimization
a standard model, which takes into account binding of the repressor and its looping, impairment
of this binding by the inducer and CAP induced up-regulation, does not fit the repression data of
Oehler et. al. (1). On the other hand, we find an excellent fit for a comprehensive model. When
the lower bound constraint on looping energy for short DNA loops is set very low we find many
different optimal solutions with the same quality of fit. On the other hand, when we set the lower
bound on short DNA loop energy to levels estimated through tethered particle experiments (20),
the optimization procedure finds fewer local minima producing a good fit. This suggests that
enforcing a high lower bound of short loop energy produces a less robust fit. Our conclusions are
compatible with suggestions, that the DNA looping is assisted by a non-specific binding protein,
such as HU, which binds non-specifically to the DNA and lowers the energy of looping (34) by
introducing a kink into the DNA. Such a protein may reconcile the discrepancy between the ex
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vivo tethered particle experimental data and the looping energy predictions which are determined
by fitting models, like ours, to in vivo data.

Our results are robust in the parameter space. Starting from 20 initial conditions we have found
11 minimizers with essentially the same value of the cost function i.e. with the same quality of the
fit. We have explored the neighborhood of these points and found that the majority of these points
still provide a satisfactory fit. This may be interpreted as robustness of the model with respect to the
parameters, or, alternatively, as a relative lack of constraint on the parameters by the experimental
data.

We often see a radically different behavior of the model repression curves at the values of the
repressor that were not yet interrogated by the experiments. This suggest that such experiments
would provide further constraints on the parameters in the system, which in turn would lead to
deeper understanding of the relative contributions of different components of lac operon to its
function.
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KP1 = 5.6× 10−7 M KP2 = 2.5× 10−7 M
[CAP] = 0.78× 10−6 M [RNAP] = 1.25× 10−6 M
KP1C1 = 0.2616 M RT = 0.617 kcal/mol
kf = 0.12 min−1 kfC1 = 1.55 min−1

Table 1: Fixed parameter values

A. Free energy of binding an operator (− represents a deleted operator)
∆GO1 ' −14.27 kcal/mol ∆GO1−a ' −8.69 kcal/mol
∆GO2 ' −12.91 kcal/mol ∆GO1−b ' −7.82 kcal/mol
∆GO3 ' −10.78 kcal/mol ∆GO2− ' −4.87 kcal/mol
∆GO3∗ ' −6.33 kcal/mol ∆GO3− ' −6.32 kcal/mol
∆GO3∗(O1) ' −8.73 kcal/mol ∆GO3∗− ' −3.72 kcal/mol

∆Gns ' −7.0 kcal/mol

B. Looping energies
∆GO12 ' 8.19 kcal/mol ∆GO23 ' 12.99 kcal/mol
∆GO23∗ ' 8.11 kcal/mol ∆GO13 ' 16.14 kcal/mol
∆GO13∗ ' 4.47 kcal/mol

C. Cooperativity
∆GC1loop ' −1.42 kcal/mol ∆GC1O3 ' 9.09 kcal/mol

∆GI ' 9.81 kcal/mol

Table 2: Best parameter values computed by the optimization procedure.

description short loop energy range
Compiled data Han et al. (Fig 12) (20) 11− 17
Tethered particle Han et al. (Fig 9) (20) 10− 12
Inferred from data Saiz et al. (Fig 3) (46) 7.5− 10
HU cyclization model Czapla et al. (34) 6− 13
DNA looping model Towles et al. (Fig 9) (30) > 11.7
DNA looping model Zhang et al. (32) 9− 12
DNA looping model Saiz et al. (33) 8− 9.5
DNA looping model Swigon et al. (5) 14.7− 16.1

Table 3: Short loop free energies comparisons in kcal/mol
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Optimized model predictions

cost ξ ∆GO13 ∆GO13∗

0.5585 7.68 16.86
0.5227 7.71 12.36
0.5226 10.87 4.09
0.5212 11.59 5.95
0.5278 7.59 9.01
0.5279 7.57 12.11
0.5584 7.68 10.97
0.5281 7.64 16.17
0.5226 7.71 14.30
0.5115 16.14 4.47
0.5225 7.71 12.29

µ 9.08 10.78
σ 2.75 4.43

Table 4: Short loop energy values: The exact looping energies predicted by the optimization, and
the associated cost, ξ, are listed below. The mean and standard deviation are listed as the last two
rows of the table.
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Figure Legends
Figure 1

Cartoon image describing the lac repressor coding region and the lac operon. In the E. coli genome
the DNA coding for a lac repressor subunit is preceded by a promoter region, Pi and immediately
followed by the lac operon. The lac operon consists of a regulatory region and the lacZ, lacY, and
lacA genes. As shown at the bottom of the figure, the regulatory region is composed of multiple
binding sites: the P1 and P2 promoter regions bind RNAP (there are also at least two other sites
P3 and P4, but these bind RNAP very weakly); C1 binds CAP; and O1, O2 and O3 bind the lac
repressor R. O1 and O3 are separated by 92 base pairs, and O1 and O2 are separated by 401 base
pairs. Each RNAP produces a mRNA copy of all three lac genes lacZ, lacY and lacA.

Figure 2

(a) Repression level curves as a function of the repressor concentration obtained from the model
based on biochemical processes 1-10 using the parameters indicated in Table 2. (b) Repression
level curves as a function of the repressor concentration for the standard model based on biochem-
ical processes 1-4. The parameter values used for this restricted model are indicated in Table S.9
in the Supplemental Material. The upper figures show the repression curves for all mutants with
the O3 operator deleted, while the lower figures show the repression curves for all mutants with
the O2 operator deleted, as well as the wild type (WT) (solid black curve).

Figure 3

We minimize the complete model for 20 values of ~x and choose the eleven most minimized vectors
as determined by the cost function. As described in the text, we take these values of ~x and their
standard deviation for the ith entry of these vectors (Table S.8). We then generate a dataset, V , of
847 vectors, where each vector is one of the original eleven modified by zero, one or two standard
deviations of the ith entry of ~x. We have sorted V by the value of cost function and plotted the
vector identity (1-828) versus the cost function. The vectors from 829 to 847 have a cost between
8 and 26 and are excluded to better present the lower cost vectors. The inset shows the repression
curves associated with the solid dot, after the first break in the grouping of the cost functions.

Figure 4

Short loop energy where each point represents one minimization. We plot ∆GO13 versus ∆GO13∗
for the eleven optimized points which resulted in a cost of ξ ≤ 0.56. The exact values are listed
on the right. The shaded square denotes the region in which looping energies have been mea-
sured (20), Table 3.
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