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The Dirac Equation

m In special relativity we have the famous relationship

E:¢£+@+£+Wﬁ (1)

m In Quantum Mechanics one “quantizes” the previous
equation by turning, E, py, py, p, into differential
operators

%) ) - 9 - 9
E—ig px— —ig; py — =iz, Pz — —ig;

m Equation 1 becomes

2 2 2
,-2:\/ c _9 —824—m2c4

ot S ox2 0y? 0Oz



Dirac Operator in 1d

Goal: find an operator D such that




difficult, just take

If you know complex numbers the previous problem is not too
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Formal Self-Adjointness

Assume, that f, g € C*(R, C) have compact support; then
integration by parts says that

<Df g>p = fR< X) (x)dx

= (fF()E()[=T — Jpif(x)

= < f,Dg >,2

so the Dirac operator in 1d is formally self-adjoint!



Dirac Operator in 2d

Goal: find an operator D such that




Dirac Operator in 2d

Inspired in the 1d case, we use the following “ansatz”

D:a‘g—i-bé

where a, b are some constants. Since

0 0 0 0 8 0?2
2_(,9 .9 Y 929
D _(36x+b6y> (36x+b8y> a? B 2—&-(ab—i—ba)8 ay
so we need
a’= -1
ab+ba=20
b2 =—1

In particular, a and b must anticommute!



Dirac Operator in 2d

It is not hard to check that

=(24) (%)

satisfy a°> = b? = —/d and ab = —ba. Therefore, our Dirac
Operator D = a2 + bﬁ in 2d is

0 i2 42
_ ) . ox dy
p </?—0 0 )



The Cauchy Riemann Operator

We can rewrite the Dirac operator as

0 l(ﬁ_iﬁ)
5(5—1'/8—}/) 0 0z

Therefore

¢

( v ) € ker D +— 1) is holomorphic and ¢ is antiholomorphic



Formal Self-Adjointness

If we write

b 0 i+ _( 0 D)
= ., =
9% — 3y 0 D 0

using Green's Theorem it can be checked that for f, g € C>(R?,C)
< Df,g >2=<f,Dg > 2

so that D is the formal adjoint of D. So we can write

(3 %)

which proves again that the Dirac operator is formally self-adjoint!

Spoiler Alert: in even dimensions we will always have a decomposition

for the Dirac operator like previous onel!



Dirac Operator in 3d

Just as we did for one and two dimensions, if we take

D*cg%—cg—kcé
~ ox 28y >0z

2 _ _ (2 L 22 4 2 i
then D* = <8X2 + 57t 822) if and only if
2_ 2 _ 2 _
Gg=¢=c¢c=-1
C1Cy + CpCp = C1C3 + C3C1 = G C3 + C3Cp = 0

The previous system of equations is satisfied by Hamilton's
Quaternions, i.e, we can take

0 0 0
D=i—+j— +k—
l@x +J8y+ 0z



Dirac Operator on R” and Clifford Algebras

For R” , the Dirac Operator (for the standard inner product)

will be )
D = o o o
= Mg x| ox, " G
where the ~; are the generators for the Clifford Algebra of R”,
e,

v =-1



What About the Dirac Equation?

We were trying to find D such that

p_ L &
COt2 Ox2 Oy? 022

In fact we can take

O 0 0, Oy — i0,
D — 0 O Ox + iay -0,
~0,  —0.+id, —0, 0
o, —ia, @, 0 8,

The Dirac equation was used to predict the existence of
antiparticles!



What About Other Spaces?

m What do we mean by the Laplacian on an arbitrary
manifold M? Does it always exist?

m What do we mean by the Dirac Operator on an arbitrary
manifold M? Does it always exist?




Ingredient 1: Fourier Transform

Recall that for a sufficiently well behaved function v : R — R
we can define its Fourier transform Fu: R — R by

Fu(x) = i(p) = /R e~27P% () dx

Modulo some constants, differentiation becomes multiplication

in that
% = | (amin) e alp)dp = [~Bmixul)] = F (~2miu(x)
R
—27ix- .
u — =27 iu
Fi LrF

d
dp dii

u T



Ingredient 2: Local Coordinates

On a general manifold M we don’t have global coordinates
(think of a sphere), however, we can use local coordinates
X1, , X, to describe it. In particular, a linear differential
operator L of order m can be described locally as an operator

L: C*(M;RY) — C>*(M;RP)

given by
o %n
bu= 3 2l g g
lo|<m ——_———
D«
where u = (uy,- -+ ,uy) : M — R and the a,(x) are p X q

matrices



Symbol of a Differential Operator

For our differential operator

o™ o
Lu= Z a,(x) o A u

laf<m

we define its (leading) symbol by replacing the partial
derivatives by “momenta”

oL(x.p) = > aa(x)pt - por

la=m



Example on M = R3

L: C®(M,R3) — C=(M,R?)
(un(x), v2(x), us(x)) — (xoe G + 52 + s, )

For the (leading) symbol keep the highest order terms so we work with

o x 32U1 62U2 8 us — [ xix 82U1 o)+ 62U2 8%3
172 Ox? 8X18X3 Ox10x3 )\ ox2’ 0x10x3" Ox10x3

u1

o X1X2 0 0 82 010 82
L(uy, up, u3) = [( 0 0 0 ) 8x2 + ( 0 01 ) Ox10x3 52
3

2
X1 X: 0
O'L(X17X27X3aplap21p3) = ( ! 02p1 p10p3 p1p3 )




Gradient on M = R?3

Vu <8X’3y’ oz

%)
.:i:;::.tﬂ( Je-(£)e-(2)4)
oo (3o (D)o (3)o- 3)



Curl on M = R3

curl : C**(M,R3) — C>°(M,R3)

ou; Oux Ju dus du du:
Vox (ur, vz, u3) = (Tf—a*;’a*;—a*fva*f—afy‘

00 0 0 01
00 -1 ]Z+| 0 00
01 0 -1.0 0

Its symbol is

Ucurl(xa p) - P3 0 —pP1



div C°°(M,R3) — COO(M R)
V- (U1, ug, U3) = Bul + 35 Buz + 3 a—ui

(U]_, uz, U3) —

u2

(1 o0)Z+(010)Z+(00 1)%](UI)
Its symbol is

u3
oav(x,p) =(p1 P2 p3)
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Generalized Laplacian and Dirac Type Operator

Suppose that £ is a vector bundle over a Riemannian manifold
M.

m A Generalized Laplacian on £ is a second order
differential operator /A such that

on(x,p) = —|p|?

m An Operator of Dirac Type on &£ is a first order
differential operator D such that

UD*D(Xa P) = _HP”2

i.e, the symbol of its “square” acts in the same way as the
symbol of a generalized Laplacian




An Old Friend

Recall that in R? our Dirac operator was

D 0 ita \_(0 D
i~ a 0 D 0

Since
op(X,p) =ip1 — P2 0p+=(X,P) = ip1 + P2
then
op-p(x,p) = 0= (x, p)oop(x,p) = (ip1 + p2) (ip1 — p2) = —pi—p5 = —|p|?

so D is an operator of Dirac type.



Vector Operations on M = R3 and de Rham
Cohomology

0— C3R) > 3R} 25 C3R) 5 CH(R) — 0

From vector calculus we know that
V x(Vep)=0  curl(grad)=0

V- (VxE)=0 div(curl)=0

therefore we can define a cohomology Hjs(IR3) !



Computing HY(R?)

v V x \%%

0— C3(R) — CZR) — C3R) — CG3(R)—0

Hyr(R?) =kerV ={¢: R’ — R | Vp =0}

Now, V¢ = 0 if and only if ¢ is a constant scalar field. Since
there is a constant scalar field for each real number we have
that

HYr(R3) ~ R



Computing H}p(R?)

0— C3R) > C3RY) 25 C3R) 5 CH(R) — 0

Hpr(R?) = iknfr((gcruar(li)) -

{[E]|[VXxE=0and E~FE'iffE' =E+ V¢}

From Advanced Calculus we know that every irrotational
vector field E is conservative, i.e, E = V¢ so E € [0] and

hence
HER(R3) =0



Computing Hpp(R?)

v V X

0 CIR) — CHE) 5 CX(R) — CX(R) =0
H%R(R3)—it:r((:i:&—{[B]|V~B—OandBNB’ifFB/—B—&—VxA}

From Electromagnetism/Vector Calculus we know that every
solenoidal vector field B has a vector potential A, i.e,
B =V x A so B € [0] and hence

Hpr(R?) =0



0— C3R) & 3R} 25 C3R)

ws(R) =0

H}r(R?) = coker(div) = {[f] | f :R}* — Rand f ~giff f=g+V-B

Since f(x,y,z) =V - ([, f(t,y,2)dt,0,0) we have f € [0] so

Hpr(R?) =0
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Differential Equations and Topology: de Rham's
Theorem

De Rham’s Theorem: the de Rham cohomology is isomorphic
to the cohomology of the manifold, i.e,

Hpr(M) =~ H*(M)

In particular we can compute the Euler characteristic of the
manifold as

which means that the topology of the space restricts the
dimensions of the space of solutions of certain differential
equations (Laws of Physics) on our manifold!



The Hodge Laplacian

v Vx V-
0= G3(R) :v> C3(R3) v: C3(R) i C3(R) =0
v “ N

We can define the Hodge Laplacians
Ao Cs(R) — CR3(R) VAN TS C&(R‘?’) — Cﬂ‘g(ﬂ@)
No(f) ==V - (V) AN1(u) =V (=V-u)+V x(V xu)

- <% + giyg + %> = (Ao(ur), Do(u2), No(us3))



The Hodge Operator

We can combine them to define a Laplacian on
Oy = [GER) & G3(R)] @ [G3(R) & GS(R°)]
Define the Hodge- Laplacian
AH : .QK/, — QX/I
( (f,u) ) ( (Aof, A]_U) )
Ay =
(g7 V) (A0g7 A1")
Does it have a Dirac operator?

Observe that _
rank(2;, = 8 = 23 = 2¢4mM



The Hodge-Dirac Operator

V-
0= Cs(R) = Cﬁg‘;(]l@) = CB(R) = CER)=0
_V- X -V
f v u g
0 1 2 3

D2, — 2,
(fbuy\ ([ (-V-v, =Vg+Vxv)\ (0 D* (f,u)
D((g,v)>_< (V-u, VF+V xu) >_<D 0 )((g,v)
D(f,u)=(V-u, VFf+V xu)
D*(g,v)=(-V-v, =Vg+V xv)

() =2 ()

Therefore we found a square root for the Laplaciand



“Index” Hodge-Dirac Operator on M = R3

We have that
ker D ={(f,u) | V-u=0and Vf = -V x u}

ker D* = {(g,v) | V-v=0and Vg =V x v}

and (f,u) — (—f,u) gives a bijection between ker D and
ker D* .

indexD = dimker D — dimker D* £ 0
The previous calculation fails because ker D and ker D* are
infinite dimensional!l However, if we run the same argument on
a compact, oriented, Riemannian manifold it can be show that

indexD = x(M)

so an analytical quantity (the index) is determined by a
topological quantity (Euler Characteristic)!



Fixing the problem: Fredholm Operators

A bounded linear operator T : E — F between Banach spaces is
called Fredholm if it has finite dimensional kernel and cokernel. We
can define its index by

indexT = dimker T — dim coker T

~~~~: It E, F are finite dimensional vector spaces then by the
rank-nullity theorem (dim E = dimker T 4+ dimimT) the index
is independent of the operator since

indexT = dim E —dim F

~~~~: In infinite dimensions the index can depend on the
operator. For example, in /> we have

shift*(co, c1, c,---) = (0, c0, c1, €2, - ) ind (shift™) = —1

shift™ (co, €1, €2, ) = (c1, 62, ) ind(shift™) = +1



Fixing the problem: Elliptic Operators

An operator D is elliptic if

p # 0 — op(x, p) is invertible

For example, the symbol for D(f,u) = (V -u, Vf +V x u)

0 p P2 P3
|l 0O —p3 p
70(x.p) = p2 ps 0 —pi

ps —p2 p1 O

and since detop(x,p) = —(pi + p3 + p3)? we see that
whenever (p1, p2, p3) # (0,0, 0) the matrix op(x, p) is
invertible, i.e, D is an elliptic operator!



~~~~ The “wave operator”

has symbol

oa(x,p) = p5 — Pi — P5 — P3

and it clearly vanishes on the “light cones”

Po—Pi—p;—p;=0 )
~~~~The "heat kernel operator

has symbol
oH(x,p) = —p — P — P}

and it clearly vanishes whenever p; = p = p3 = 0 and py € R.



Why do we care about Elliptic Operators on a
compact manifold?

1) The operators of Dirac type are always elliptic

2) Over a compact manifold M, being elliptic implies being
Fredholm

3) Fredholm operators are very stable under perturbations,
which suggests that the index of a Fredholm operator might

be computed via topological quantities



The Atiyah-Singer Theorem

indexD 2 topological stuff!

where by “topological stuff’ we mean certain characteristic
classes associated to the manifold and the vector bundle on
which the Dirac operator acts.
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Thank youl

Source:

[m]

https://commons.wikimedia.org/wiki/File:Dirac%27s _commemorative _marker.jpg
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