
MATH 251, Mariano Echeverria

Scalar Fields

This material corresponds roughly to sections 14.1, 14.2, 14.3, 14.4, 14.5 and 14.6 in
the book.

Finding the graph of a function z(x, y):

1. Draw the cartesian coordinate system xyz: its points are triples (x, y, z)

2. For each point (x, y, 0) , that is, a point (x, y) on the xy plane at height 0, find
the value z(x, y) and draw the point (x, y, z(x, y))

3. The graph of z(x, y) is the surface obtained by applying the procedure in step 2
to each point in the domain of z(x, y)

Finding the domain of a function z(x, y):
This works in a very similar way to how you find domains of a function of a single
variable. For example, for the domain of

z(x, y) = ln(1� x� 2y) (1)

You require that
1� x� 2y > 0 (2)

since ln is only defined for positive numbers. Similarly, for

z(x, y) =
ex

x� y
(3)

You require that x 6= y since in general a fraction becomes undefined when the denom-
inator is 0. The biggest difference with the case of functions of one variable is that
the domain will have a more interesting geometric shape (for example, circles, planes,
deleted lines) rather than intervals.
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Solving an inequality f(x, y) � 0

1. Find the equation f(x, y) = 0. For example, if you want to determine when
x2 � y � 0 you find first the equation

x2 = y (4)

which is the equation of a parabola.

2. The equation divides the plane into different regions. On each region choose a
point (a, b) and compute f(a, b). If f(a, b) � 0 then that region satisfies the
inequality, otherwise it does not satisfy it. For example, for x2 � y � 0 we have
f(x, y) = x2 � y and we choose the points (0, 1) and (0,�1). Since f(0, 1) = �1
which is not positive this region does not satisfy the inequality while f(0,�1) = 1
is positive so the second region does satisfy it.

A similar strategy works for f(x, y) < 0.

Problem 1. Find the domain of the function z(x, y) =
p
2x+ y + 3 and represent it on

the xy plane.
Since we can only take square roots of nonnegative numbers we require

2x+ y + 3 � 0 (5)

To represent the points (x, y) that satisfy this inequality we represent first the equation

2x+ y + 3 = 0 (6)

on the xy plane. This is the equation of the straight line

y = �2x� 3 (7)

and it separates the xy plane into two regions. All the points that satisfy the inequality
correspond to only one of the regions. To determine which region satisfies the inequality
choose a random point, for example (0, 0). It is easy to see that (0, 0) satisfies the
inequality 2x + y + 3 � 0 so the region that works must contain the origin as shown in
the next figure (the graph is also shown although you won’t need to do it).
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Problem 2. Find the domain of f(x, y) =
p

4�x2�y2

x�y and represent it on the xy plane.
In this case we need the expression inside the square root to be nonnegative, that is,

4� x2 � y2 � 0 (8)

Again to plot the inequality on the xy plane we fist plot the equality which is

4� x2 � y2 = 0 =) x2 + y2 = 4 (9)

and this is the equation of a circle of radius 2 centered at the origin. Again, the circle
divides the xy plane into two regions and all the points satisfying the inequality belong
to one of the regions. It is easy to see that (0, 0) satisfies the inequality 4� x2 � y2 � 0,
so the interior of the circle must correspond to the region which satisfies the inequality.

Also, we need the denominator to be different from zero, that is

x� y 6= 0 (10)

This means that the domain cannot include the equation

x = y (11)

And so the domain must be all points (x, y) which belong to the disk of radius 2 centered
at the origin but which do not lie on the straight line x = y.
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Finding Level Curves: Suppose that z(x, y) is a function of two variables x and y.
If c is some value of the function z , then the equation

z(x, y) = c (12)

describes a curve lying on the plane z = c called the trace of the graph of z in the
plane z = c.
If this trace is projected onto the xy plane, the resulting curve in the xy plane is called
a level curve. By drawing the level curves corresponding to several admissible values
of c, we obtain a contour map.

Problem 3. Find the level curves of z(x, y) = x2 + y2

We need to solve the equation
x2 + y2 = c (13)

Observe that if c < 0 the previous equation has no solution. If c � 0, the equation
corresponds to a circle centered at (0, 0) of radius

p
c and so the level curves are concentric

circles.

Problem 4. Sketch the level curves of f(x, y) = y
x2+1 corresponding to z = �1, 0, 1.

The intersection of z = f(x, y) = y
x2+1 with the plane z = �1 are the points satisfying

the equation
�1 =

y

x2 + 1
=) �x2 � 1 = y (14)

which is the equation of a parabola.
The intersection of z = f(x, y) = y

x2+1 with the plane z = 0 are the points satisfying
the equation

0 =
y

x2 + 1
=) 0 = y (15)
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which is the equation of the x axis.
The intersection of z = f(x, y) = y

x2+1 with the plane z = 1 are the points satisfying
the equation

1 =
y

x2 + 1
=) x2 + 1 = y (16)

which is the equation of a parabola.
The following image shows the level curves of f(x, y) corresponding to z = �1, 0, 1

�2. �1. 1. 2.

�2.

�1.

1.

2.

0

Limits and continuity [this topic will not be evaluated on the exam, only
on the written homework ,]
We say that

lim
(x,y)!(x0,y0)

f(x, y) = L (17)

If f is defined near (x0, y0), although not necessarily at the point (x0, y0), and for every
✏ > 0 there exists � > 0 such that if (x, y) satisfies

0 < k(x, y)� (x0, y0)k < � (18)

then
|f(x, y)� L| < ✏ (19)

We sat that f is continuous at (x0, y0) if

lim
(x,y)!(x0,y0)

f(x, y) = f(x0, y0) (20)
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Example 5. Analyze the limit

lim
(x,y)�!(0,0)

x3y

x6 + y2
(21)

Notice that the domain of this function is every point in the plane except for the origin,
that is,

U =
�
(x, y) 2 R2 : (x, y) 6= (0, 0)

 
(22)

For the limit to exist it must do so for every direction which choose when approaching
the point in question. In particular, we can use a line of slope m to approach the origin.
Namely, consider the points of the form (x, y) = (x,mx) and notice that on this points
f(x, y) = x3y

x6+y2 behaves as

x3y

x6 + y2
=

mx4

x6 +m2x2
=

mx2

x4 +m2
�! 0 (23)

as x �! 0. On the other hand, if one takes the curve y = x3 to approach the origin we
find that

x3y

x6 + y2
=

x6

x6 + x6
=

1

2
(24)

Since the limit must be independent of the curve chosen to approach (0, 0) we conclude
that the limit does not exist.

Example 6. Determine if the function

f (x, y) =

(
y

y+x2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
(25)

is continuous at the origin.
As in the previous example, we choose lines with slope m. If y = mx then

y

y + x2
=

mx

mx+ x2
=

m

m+ x
�! 1 (26)

Which means that even if the limit exists (which in fact it doesn’t as one can verify by
taking y = x2 instead!) it would not agree with f(0, 0) = 0 , so we conclude that f is
not continuous at the origin.
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Partial Derivative of a function z = f(x, y)

Î Recall that the graph of f can be represented by a surface. To specify the tangent
plane to the surface passing through the point (x0, y0, z0), where z0 = f(x0, y0) ,
we need two “slopes” which describe how the tangent plane is tilted with respect
to the xy plane. These slopes are the partial derivatives @f

@x and @f
@y .

Î In practice, they can be computed by treating the other variables as constants.
@f
@x indicates how much the function f is changing when you move in a direction
parallel to the x axis. @f

@y indicate how much the function f is changing when
you move in a direction parallel to the y axis. They are also denoted fx and fy
respectively.

For example, if f(x, y) = x2y + 3 sinx and we want to find @f
@x then we consider y as a

constant and differentiate the function as if it is a function depending exclusively on x
and so

@f

@x
= (2x)y + 3 cosx (27)

Similarly, to find @f
@y we consider x as a constant and differentiate the function as if it

is a function depending exclusively on y and so

@f

@y
= x2 (28)

Problem 7. Find fx(1, 2) and fy(1, 2) if f(x, y) = exy.
The partial derivatives of f are

@f
@x = yexy

@f
@y = xexy

(29)

Therefore
fx(1, 2) = 2e2

fy(1, 2) = e2
(30)

Example 8. The intersection of the plane x = 1 with the graph of f(x, y) =
x cos(y) gives you a curve as indicate in the following image. Find the slope
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of the tangent line to this curve when the value of y is 0.

At the intersection between the plane and the graph of f we have the curve given by
f(1, y) = 1 · cos(y) = cos y. We want to find fy(1, 0) which is

fy (1, 0) = � sin(y) |y=0= 0 (31)

Therefore, the slope of the tangent line is m = 0.

Gradient operator and directional derivatives

Î It is also possible to analyze the rate of change of a function T (x, y, z) in a
direction which is not necessarily parallel to either the x, y, or z axis. That is,
a rate of change which is not equal to @T

@x , @T
@y or @T

@z . For example, we could
try to analyze the rate of change of T when we move along the line through the
origin determined by the vector v = i + j + k = (1, 1, 1). One could define a
new notation and write something like @T

@v . Rather than doing this, we define
the direction derivative of the scalar field T along the direction v̂ as the
quantity

Dv̂T (x, y, z) = lim
4t!0

T ((x, y, z) + v̂4t)� T (x, y, z)

4t
(32)

Notice that we used the normalized version of v, that is, the unitary vector v̂
associated to v.

Î It is possible to determine this directional derivative in terms of the partial
derivatives @T

@x , @T
@y or @T

@z .

Î First, given T we define a vector field called the gradient of T , which is denoted
rT and it is defined as

rT (x, y, z) =
@T (x, y, z)

@x
i+

@T (x, y, z)

@y
j+

@T (x, y, z)

@z
k (33)

Î It is not difficult to check that in this case

Dv̂T (x0, y0, z0) = rT (x0, y0, z0) · v̂ (34)
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Example 9. Suppose that T (x, y, z) = xy+x3 sin z. Find rT (x, y, z) and the direction
derivative along the vector u = 1p

5
i� 2p

5
j+ 2p

5
k at the point (1, 1, 0).

First we compute the partial derivatives

@T (x,y,z)
@x = y + 3x2 sin z

@T (x,y,z)
@y = x

@T (x,y,z)
@z = x3 cos z

(35)

Therefore the gradient is

rT (x, y, z) =
�
y + 3x2 sin z

�
i+ xj+ x3 cos zk (36)

Recall that to compute the directional derivative we need to use a unitary vector. Since

kuk =
3p
5

(37)

we normalize it and work instead with

û =
u

kuk =
1

3
i� 2

3
j+

2

3
k (38)

Therefore, the directional derivative at (1, 1, 0) along the vector bu can be computed as
34

DûT (1, 1, 0) = rT (1, 1, 0) · û =(i+ j+ k) ·
✓
1

3
i� 2

3
j+

2

3
k

◆
=

1

3
(39)

Interpretation of the gradient rT

Î Given that Dv̂T (x, y, z) = rT (x, y, z) · v̂ = krT (x, y, z)k cos(✓), where ✓ is the
angle between rT (x, y, z) and v̂, we can see (since �1  cos ✓  1) that for any
direction v̂, we have

�krT (x, y, z)k  Dv̂T (x, y, z)  krT (x, y, z)k (40)

From this we easily conclude that

Î If T (x, y, z) is a scalar field, then if one moves along the direction specified by
rT (x, y, z), one experiences the largest increase of T . Likewise, moving in the
direction determined by �rT (x, y, z), one experiences the largest decrease of T .

Î Moreover, if one moves in directions orthogonal to the gradient rT ,
then one does not experience any change of T . That is, T is constant along
those directions. For a function of three variables like T (x, y, z), these regions
where T does not change typically gives rise to surfaces known as isothermal
surfaces (if one thinks of T as temperature), or equipotential surfaces (if one
thinks of T as an electric potential).
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Exercise 10. If w = x2 + xy + y2 � z, find at the point (1, 1, 3) the highest rate of
change of w and the direction along which that happens.

Here the scalar field is

w(x, y, z) = x2 + xy + y2 � z (41)
We need to compute the gradient

rw(x, y, z) = (2x+ y) i+ (x+ 2y) j� k (42)

The direction where w increases at the highest rate is given by normalizing the gradient
at the point (1, 1, 3):

û(1, 1, 3) =
rw(1, 1, 3)

|rw(1, 1, 3)| =
3i+ 3j� kp

19
(43)

and the value of the rate of change at that point is:

Dûw (1, 1, 3) = |rw(1, 1, 3)| =
p
19 (44)
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Rules for gradients:
If f(x, y, z) and g(x, y, z) are two differentiable scalar field

Î The sum f + cg is again another scalar field, where c is a constant. Moreover,

r (f + cg) = rf + crg
Dv̂ (f + cg) (r) = Dv̂f (r) + cDv̂g (r)

(45)

Î The product fg is a new scalar field and moreover

r (fg) = (rf) g + f (rg)
Dv̂ (fg) (r) = (Dv̂f (r)) g(r) + f (r) (rv̂g (r))

(46)

Î If the gradient of a scalar field is always null, that is

rT (x, y, z) ⌘ 0 for all (x, y, z) (47)

then T is a constant scalar field.
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Higher Order Derivatives:

Î We use the notation fxx or @2f
@x2 to indicate that we differentiate twice with respect

to x.

Î We use the notation fyy or @2f
@y2 to indicate that we differentiate twice with respect

to y.

Î We use the notation fxy or @2f
@y@x to indicate that we differentiate first with respect

to x and then with respect to y

Î We use the notation fyx or @2f
@x@y to indicate that we differentiate first with respect

to y and then with respect to x

Î There is no need to remember the order of x and y in the last two partial
derivatives since they will agree for the functions we compute, that is, we will
have

@2f

@y@x
=

@2f

@x@y
(48)

The mathematical way to say this is that the mixed partial derivatives com-
mute.

As an example, if
f(x, y) = x sin(x2 + y) (49)

Then
@f

@x
= fx = sin(x2 + y) + 2x2 cos(x2 + y) (50)

We can now consider fx as a new function of two variables and take its derivatives
with respect to x or y. For example

@2f

@x2
=

@

@x

✓
@f

@x

◆
= fxx = 2x cos(x2 + y) + 4x cos(x2 + y)� 4x3 sin(x2 + y) (51)

We can now differentiate with respect to y twice

@f
@y = fy = x cos(x2 + y)

@2f
@y2 = fyy = �x sin(x2 + y)

(52)

Now we differentiate f with respect to x first and then with respect to y:

@
@y

⇣
@f
@x

⌘
= @

@y

�
sin(x2 + y) + 2x2 cos(x2 + y)

�

= cos(x2 + y)� 2x2 sin(x2 + y

(53)

Similarly, we can differentiate with respect to y first and then with respect to x:

@
@x

⇣
@f
@y

⌘
= @

@x

�
x cos(x2 + y)

�

= cos(x2 + y)� 2x2 sin(x2 + y)

(54)

This shows (at least in this case) that the mixed partial derivatives commute as state
earlier, that is,

fxy =
@2f

@y@x
=

@2f

@x@y
= fyx (55)
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F(u,v,w)
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Figure 1: Composition of functions
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Figure 2: Tree diagram
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Example 11. If w = f(x, y) where x = er cos ✓, y = er sin ✓ verify the identity
@2w
@x2 + @2w

@y2 = e�2r
⇣
@2w
@r2 + @2w

@✓2

⌘

We use the following diagram for the chain rule

Figure 3: Tree diagram for chain rule

If we introduce also the notation

wx ⌘ @w

@x
wy ⌘ @w

@y
(56)

then the chain rule says that to compute something like wr, we must take all paths from
w to r and all the different contributions from each possible route. In other words,

wr = wxxr + wyyr (57)

Then wrr is computed via the product rule

wrr =
@(wxxr+wyyr)

@r = wxrxr + wxxrr + wyryr + wyyrr (58)

To find wxr =
@wx
@r and wyr =

@wy

@r we can regard wx, wy as our new functions for the tree
diagram so we put them on top (instead of w that is). Hence

wxr = wxxxr + wxyyr
wyr = wyxxr + wyyyr

(59)

In this way

wrr = (wxxxr + wxyyr)xr + wxxrr + (wyxxr + wyyyr) yr + wyyrr (60)

Since the way in which r, ✓ appear is completely symmetric, to find w✓✓ we can use the
same expression if we substitute r for ✓. In this way

wrr = (wxxxr + wxyyr)xr + wxxrr + (wyxxr + wyyyr) yr + wyyrr
w✓✓ = (wxxx✓ + wxyy✓)x✓ + wxx✓✓ + (wyxx✓ + wyyy✓) y✓ + wyy✓✓

(61)
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Finally, using that x = er cos ✓, y = er sin ✓ we find

wrr = (wxxer cos ✓ + wxyer sin ✓) er cos ✓ + wxer cos ✓
+(wyxer cos ✓ + wyyer sin ✓) er sin ✓ + wyer sin ✓

(62)

w✓✓ = (�wxxer sin ✓ + wxyer cos ✓) (�er sin ✓)� wxer cos ✓
+(�wyxer sin ✓ + wyyer cos ✓) (er cos ✓)� wyer sin ✓

(63)

Adding both equations and recalling that wxy = wyx we obtain

wrr + w✓✓ = e2r (wxx + wyy) (64)

That is,
@2w

@x2
+

@2w

@y2
= e�2r

✓
@2w

@r2
+

@2w

@✓2

◆
(65)

which is what we were after.

Equation tangent plane
If g (x, y, z) = 0 represents the equation of a surface then rg is a vector orthogonal to
the surface (recall the discussion from before where we said that when one moves in
directions perpendicular to rg then g is constant).
Therefore, if P = (x0, y0, z0) is a point on the surface then the equation of the tangent
plane to the surface at the point P has normal equation

(x, y, z) ·rg (x0, y0, z0) = (x0, y0, z0) ·rg (x0, y0, z0) (66)

P

rg

Figure 4: Tangent Plane

Example 12. The point P = (2, 1, 5) belongs to the paraboloid z = x2 + y2. Find the
equation of the tangent plane to the surface at that point.

We define
g(x, y, z) = z � x2 � y2 (67)

and compute its gradient
rg = �2xi� 2yj+ k (68)
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Using equation 66 the normal form of the tangent plane is

(x, y, z) · (�4,�2, 1) = (2, 1, 5) · (�4,�2, 1) (69)

which is the same as
�4x� 2y + z = �5 (70)
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Figure 5: Tangent Plane

Example 13. The point P = (0, 0, 0) belongs to the intersection of the paraboloid
z = x2 + y2 + x+ 2y and the plane z = 3x� 4y. Find a vector tangent to the curve of
intersection of both surfaces at the point P .

Let g1(x, y, z) = x2 + y2 + x+2y� z = 0 represent the first surface while g2(x, y, z) =
3x� 4y � z = 0 the second one.

Call C the curve of intersection. Since C belongs to the first surface, its tangent
vector must be orthogonal to rg1(P ). Likewise, its tangent vector must be orthogonal
to rg2(P ). Given that

rg1 = (2x+ 1) i+ (2y + 2) j� k rg2 = 3i� 4j� k (71)

at the point P = (0, 0, 0) the gradients are

rg1(P ) = i+ 2j� k rg2(P ) = 3i� 4j� k (72)
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And the vector v tangent to the curve will be orthogonal to both gradients, so we can
take

v = rg1(P )⇥rg2(P ) = (i+ 2j� k)⇥ (3i� 4j� k) = �6i� 2j� 10k (73)

Figure 6: Intersection between plane and surface

17


