Problems on Vector Geometry

This material corresponds roughly to sections 12.1, 12.2, 12.3 and 12.4 in the book, as well as the study guide Vector Geometry.

Test your understanding questions: the following questions are meant to summarize the key points from the sections covered in this study guide.

1. What is the line of intersection between the $x z$ and $y z$ planes?
2. What does the equation $x=3$ correspond to if a) x is the only variable being considered, b) x, y are the only variables being considered, c) x, y, z are the only variables being considered.
3. What does the equation $x^{2}+y^{2}=4$ correspond to if a) x, y are the only variables being considered, b) x, y, z are the only variables being considered.
4. Find the intersection between the sphere $3 x^{2}+y^{2}+z^{2}=4$ and the cylinder $y^{2}+z^{2}=$ 1.
5. A vector \mathbf{v} is called a unit vector if $|\mathbf{v}|=1$. If \mathbf{v} and \mathbf{w} are unit vectors, is $\mathbf{v}+\mathbf{w}$ a unit vector? If not, what is the smallest and largest magnitude $|\mathbf{v}+\mathbf{w}|$ can take?
6. Suppose \mathbf{v} is a vector on the $x y$ plane. Then $\mathbf{v}=|\mathbf{v}| \frac{\mathbf{v}}{\mathbf{v} \mid}$ is known as the polar decomposition of the vector. Can you think of a reason why this name is given to the previous equation? Hint: think of complex numbers.
7. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}$ are two vectors and \mathbf{u} another vector such that $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{1}=3 \mathbf{i}-5 \mathbf{k}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{2}=2 \mathbf{j}+7 \mathbf{k}$. Find a) $\operatorname{proj}_{\mathbf{u}}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)$, b) $\operatorname{proj}_{\mathbf{u}} 3 \mathbf{v}_{1}$ and c) $\operatorname{proj}_{3 \mathbf{u}} \mathbf{v}_{2}$.
8. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are three different vectors. Does the expression $\mathbf{v}_{1} \cdot \mathbf{v}_{2} \cdot \mathbf{v}_{3}$ make sense? What about $\mathbf{v}_{1} \times \mathbf{v}_{2} \times \mathbf{v}_{3}$? What about $\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)$? Is the last expression the same as $\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \cdot \mathbf{v}_{3}\right)$, or the same as $\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right) \times \mathbf{v}_{3}$?
9. If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then does $\mathbf{v}=\mathbf{w}$?

Problem 1. Find the vector v of norm 3 that makes an angle of $\frac{3 \pi}{4}$ radians with the positive x axis.

The vector is

$$
\begin{equation*}
\mathbf{v}=3\left(\cos \left(\frac{3 \pi}{4}\right), \sin \left(\frac{3 \pi}{4}\right)\right)=3\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \tag{1}
\end{equation*}
$$

Problem 2. Determine whether the vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are parallel, where $A=(0,2,5), B=(3,8,2), C=(3,5,-7)$ and $D=(8,15,-12)$

$$
\left\{\begin{array}{l}
\overrightarrow{A B}=B-A=(3,6,-3) \tag{2}\\
\overrightarrow{C D}=D-C=(5,10,-5)
\end{array}\right.
$$

If the vectors were parallel, one can find a real number such that

$$
\begin{equation*}
\overrightarrow{C D}=t \overrightarrow{A B} \tag{3}
\end{equation*}
$$

In other words, we need to solve

$$
\left\{\begin{array}{l}
5=3 t \tag{4}\\
10=6 t \\
-5=-3 t
\end{array}\right.
$$

The solution of this system of equations is $t=\frac{5}{3}$ so the vectors are parallel. Alternatively, one can observe that

$$
\begin{equation*}
\overrightarrow{C D} \times \overrightarrow{A B}=(0,0,0) \tag{5}
\end{equation*}
$$

which as I mentioned in class is another way of verifying whether they are parallel or not.
Problem 3. Consider $P=(1,3), Q=(5,-1), R=(2,3), S=(x, 2)$ where x is unknown.

1) Find $\overrightarrow{P Q}$ and $\overrightarrow{R S}$
2) Find the value of x so that $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ become parallel.
3) Find a unit vector in the direction of $\overrightarrow{R S}$
4)

$$
\left\{\begin{array}{l}
\overrightarrow{P Q}=Q-P=(4,-4) \tag{6}\\
\overrightarrow{R S}=S-R=(x-2,-1)
\end{array}\right.
$$

2) we want to find a number t so that

$$
\begin{equation*}
(4,-4)=t(x-2,-1) \tag{7}
\end{equation*}
$$

This gives the equations

$$
\left\{\begin{array}{l}
4=t(x-2) \tag{8}\\
-4=-t
\end{array}\right.
$$

which has solution

$$
\begin{equation*}
x=3 \tag{9}
\end{equation*}
$$

3) the vector is

$$
\begin{equation*}
\hat{\mathbf{v}}=\frac{\overrightarrow{R S}}{\|\overrightarrow{R S}\|}=\frac{(1,-1)}{\sqrt{2}} \tag{10}
\end{equation*}
$$

Problem 4. 1) Write the equation of a sphere with center $P=(1,-1,3)$ and radius 2.

$$
\begin{equation*}
(x-1)^{2}+(y+1)^{2}+(z-3)^{2}=4 \tag{11}
\end{equation*}
$$

2) Find the value (or values) of c such that $Q=(2,-1, c)$ is on the sphere. We need Q to satisfy the previous equation, that is,

$$
\begin{equation*}
(2-1)^{2}+(-1+1)^{2}+(c-3)^{2}=4 \tag{12}
\end{equation*}
$$

which gives

$$
\begin{equation*}
c=3 \pm \sqrt{3} \tag{13}
\end{equation*}
$$

Problem 5. Take $P=(1,1)$ and $\overrightarrow{P Q}=\langle-2,3\rangle$.

1. Find point Q
2. What is the length of $\overrightarrow{P Q}$?
3. Find a unit vector parallel to $\overrightarrow{P Q}$.
1) We need

$$
\begin{equation*}
Q-P=\overrightarrow{P Q}=(-2,3) \tag{14}
\end{equation*}
$$

from which we see that

$$
\begin{equation*}
Q=P+(-2,3)=(-1,4) \tag{15}
\end{equation*}
$$

2) $\|\overrightarrow{P Q}\|=\sqrt{(-2)^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}$
3) $\hat{\mathbf{v}}=\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\frac{(-2,3)}{\sqrt{13}}$

Problem 6. Suppose that $\|\mathbf{v}\|=\sqrt{2}$ and \mathbf{u} is a vector such that the angle between u and v is $\frac{\pi}{4}$ radians.

1) What must the value of $\|\mathbf{u}\|$ so that $\|\mathbf{u}+\mathbf{v}\|=\sqrt{5}$
2) Find the length of the orthogonal projection of u onto the line going through v
3) Square both sides of the equation to obtain

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=5 \tag{16}
\end{equation*}
$$

Now, notice that for any vector $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$ so taking $\mathbf{a}=\mathbf{u}+\mathbf{v}$ the left hand side can be rewritten as

$$
\begin{equation*}
(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=\mathbf{u} \cdot \mathbf{u}+2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v}=\|\mathbf{u}\|^{2}+2\|\mathbf{u}\|\|\mathbf{v}\| \cos \frac{\pi}{4}+\|\mathbf{v}\|^{2} \tag{17}
\end{equation*}
$$

By assumption $\|\mathbf{v}\|=\sqrt{2}$ so we must solve the equation

$$
\begin{equation*}
\|\mathbf{u}\|^{2}+2\|\mathbf{u}\|+2=5 \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\|\mathbf{u}\|^{2}+2\|\mathbf{u}\|-3=0 \tag{19}
\end{equation*}
$$

whose only positive solution is

$$
\begin{equation*}
\|\mathbf{u}\|=1 \tag{20}
\end{equation*}
$$

2) Using the formula in the PDF (page 11) we need to find

$$
\begin{equation*}
\mathbf{u}_{\|}=\frac{(\mathbf{u} \cdot \mathbf{v})}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{\|\mathbf{u}\|\|\mathbf{v}\| \cos \pi / 4}{2} \mathbf{v}=\frac{1}{2} \mathbf{v} \tag{21}
\end{equation*}
$$

So

$$
\begin{equation*}
\left\|\mathbf{u}_{\|}\right\|=\frac{1}{2}\|\mathbf{v}\|=\frac{\sqrt{2}}{2} \tag{22}
\end{equation*}
$$

Problem 7. Consider the points $P=(1,2,0), Q=(-1,1,1)$ and $R=(2,0,1)$.
a) Find the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$
$\overrightarrow{P Q}=Q-P=(-2,-1,1)$ and $\overrightarrow{P R}=R-P=(1,-2,1)$
b) Find the cross product $\overrightarrow{P Q} \times(\overrightarrow{P R}+3 \overrightarrow{P Q})$

$$
\begin{equation*}
\overrightarrow{P Q} \times(\overrightarrow{P R}+3 \overrightarrow{P Q})=\overrightarrow{P Q} \times \overrightarrow{P R}+3 \overrightarrow{P Q} \times \overrightarrow{P Q}=\overrightarrow{P Q} \times \overrightarrow{P R}=(1,3,5) \tag{23}
\end{equation*}
$$

c) Find the area of the parallelogram whose sides are the vectors $2 \overrightarrow{P Q}$ and $-3 \overrightarrow{P R}$

The area is simply

$$
\begin{equation*}
\|2 \overrightarrow{P Q} \times(-3 \overrightarrow{P R})\|=6\|\overrightarrow{P Q} \times \overrightarrow{P R}\|=6\|(1,3,5)\|=6 \cdot \sqrt{35} \tag{24}
\end{equation*}
$$

Problem 8. a) Consider the points $P=(1,2,1)$ and $Q=(x, 4,-x)$. Find the value (or values) of x such that $|\overrightarrow{P Q}|=\sqrt{14}$.

Squaring both sides we need to solve $|\overrightarrow{P Q}|^{2}=14$ which is the same as

$$
\begin{equation*}
(x-1)^{2}+(4-2)^{2}+(-x-1)^{2}=14 \tag{25}
\end{equation*}
$$

and this gives the solution $x= \pm 2$.
b) Using the value (or values) found in a), find the vector projection of $\overrightarrow{P Q}$ along the vector $\mathbf{v}=(3,0,4)$, that is, find $\operatorname{proj}_{\mathbf{v}} \overrightarrow{P Q}$

We need to compute

$$
\begin{equation*}
\frac{\overrightarrow{P Q} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{(x-1) 3+0(2)+(-x-1) 4}{25}(3,0,4)=\frac{-x-7}{25}(3,0,4) \tag{26}
\end{equation*}
$$

depending on the value of x, we obtain $\frac{-9}{25}(3,0,4)$ or $\frac{-5}{25}(3,0,4)$.

