Problems on Scalar Fields

This material corresponds roughly to sections $14.1,14.2,14.3,14.4,14.5$ and 14.6 in the book.

Problem 1. [Maxwell relation] Thermodynamics teaches that the energy E of a rigid container of gas is a function of its entropy S and volume $V: E=E(S, V)$. Its temperature is given by $T=\frac{\partial E}{\partial S}$ and its pressure by $P=-\frac{\partial E}{\partial V}$. Show that $\frac{\partial T}{\partial V}=-\frac{\partial P}{\partial S}$. This is a Maxwell relation.

The relation is usually written $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$ in physics and chemistry texts to make it clear that S is held constant on the left and V is held constant on the right when computing the partial derivatives.

Problem 2. [Wave equation] Let $u(x, t)=f(x-v t)+g(x+v t)$ where f, g are scalar valued functions (so they take real values). Show that

$$
\begin{equation*}
v^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \tag{1}
\end{equation*}
$$

by applying the chain rule (or tree diagrams). This is a partial differential equation, called the wave equation.

Problem 3. The equation $z=x f(y / x)$ defines a surface whenever $x \neq 0$ and f is a real valued function. Find the equation of the tangent plane to the surface passing through the point $\left(x_{0}, y_{0}, x_{0} f\left(y_{0} / x_{0}\right)\right)$. Does the origin $(0,0,0)$ belong to this plane?

Problem 4. Let $f(x, y)=x-y^{2}$ and $g(x, y)=2 x+\ln y$. Show that the level curves of f and g are orthogonal at every point where they meet.

Problem 5. If three resistors R_{1}, R_{2}, R_{3} are connected in parallel, the total electrical resistance is determined by the equation

$$
\begin{equation*}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \tag{2}
\end{equation*}
$$

Find $\frac{\partial R}{\partial R_{1}}$.
Problem 6. Suppose that a duck is swimming in a circle, $x=\cos t, y=\sin t$, while the water temperature is given by the formula $T=x^{2} e^{y}-x y^{3}$. Find $\frac{d T}{d t}$ using the chain rule.

Problem 7. Show that the tangent plane at each point $\left(x_{0}, y_{0}, z_{0}\right)$ of the cone $z=$ $\sqrt{x^{2}+y^{2}},\left(\right.$ with $\left.x_{0} \neq 0, y_{0} \neq 0\right)$ contains the line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ and the origin.

Problem 8. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$.
a) Show that $\nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{r}}{r^{3}}$ whenever $r \neq 0$.
b) What is $\left\|\nabla\left(\frac{1}{r}\right)\right\|$?
c) In electrostatics, the force \mathbf{F}_{e} of attraction between two particles of opposite charge is given by $\mathbf{F}_{e}=k \frac{\mathbf{r}}{r^{3}}$. A potential function V for the electrostatic force is a scalar function $V=V(x, y, z)$ such that $\nabla V=-\mathbf{F}_{e}$ (here I am using the physicist convention for the potential). Find a potential V for \mathbf{F}_{e}.

Problem 9. Show that the surface $x^{2}-2 y z+y^{3}=4$ is perpendicular to any member of the family of surfaces $x^{2}+1=(2-4 a) y^{2}+a z^{2}$ at the point of intersection $(1,-1,2)$.

Problem 10. Find the directional derivative of $U(x, y, z)=2 x^{3} y-3 y^{2} z$ at the point $P=(1,2,-1)$ in a direction toward the point $Q=(3,-1,5)$.

