Problems Integration of Scalar Fields

This material corresponds roughly to sections $15.1,15.2,15.3,12.7,15.4,15.6$ and 16.4 in the book.

Problem 1. Consider

$$
\begin{equation*}
I=\iint_{R} \cos \sqrt{y-x} d A \tag{1}
\end{equation*}
$$

where R is the region determined by the curves $y=x+1, y=x^{2}+x$. Find I using the change of variables $u=x, v=\sqrt{y-x}$

Problem 2. Find the volume of the solid of revolution given by the equation $z^{2} \geq x^{2}+y^{2}$, which is contained inside the sphere $x^{2}+y^{2}+z^{2}=1$

Problem 3. Prove Newton's Shell theorem for the gravitational potential. Namely, the gravitational potential created by an object with constant density ρ_{M} and spherically shaped on a point $\left(0,0, z_{0}\right)$ is

$$
\begin{equation*}
\iiint \frac{-G d m}{\sqrt{x^{2}+y^{2}+\left(z-z_{0}\right)^{2}}} \tag{2}
\end{equation*}
$$

where, $d m=\rho_{M} d v o l, G$ is Newton's universal gravitational constant, and the region of integration is the interior of the sphere of radius R centered at the origin. Use spherical coordinates to show that this integral equals

$$
\begin{cases}-\frac{2}{3} \pi G \rho_{M}\left(3 R^{2}-z_{0}^{2}\right) & \text { if } 0<z_{0} \leq r \tag{3}\\ -\frac{G M}{z_{0}} & \text { if } r<z_{0}\end{cases}
$$

Problem 4. Consider the Gaussian integral

$$
\begin{equation*}
I_{a}=\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y \tag{4}
\end{equation*}
$$

where D is the disk $x^{2}+y^{2} \leq a^{2}$.
a) Use polar coordinates to show that $I_{a}=\pi\left(1-e^{-a^{2}}\right)$.
b) Find $\int_{0}^{\infty} e^{-x^{2}} d x$ using the value of $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y$.

Example 5. Find the average value of the temperature $T(x, y, z)=x^{2}+y^{2}-z^{2}$ inside the interior of the region bounded by the surfaces $2 z=x^{2}+y^{2}, x^{2}+$ $y^{2}-z^{2}=1$ and $z=0, z=3$. You can use that the average value of T, denoted $<T>$, is given by

$$
\begin{equation*}
<T>=\frac{\iiint_{R} T d V}{\operatorname{Vol}(R)} \tag{5}
\end{equation*}
$$

Problem 6. Consider the region R determined by the surfaces $z=\sqrt{x^{2}+y^{2}}$, $z=2-x^{2}-y^{2}$. Write the integral for the volume of this region using cylindrical coordinates, first using the order of integration $d z d r d \theta$, and then using $d r d z d \theta$. You do not need to compute the value of the integral!

Problem 7. Consider the double integral $I=\int_{0}^{\pi} \int_{\sin x}^{3+\cos (2 x)} f(x, y) d y d x$.
a) Draw the region of integration R.
b) Change the order of integration to $d x d y$. Do not compute the integral.

Problem 8. Consider the integral $I=\iiint_{T} \frac{x y+y^{2}}{x^{3}} d x d y d z$, where T is the region inside the first octant $(x, y, z \geq 0)$ between the plane $x+y+z=2$, the $x y$ plane, and the vertical "walls" determined by the trapezoid given by the equations $x+y=1, x+y=2, y=0, y=x$. As a suggestion, use the change of variables $x=\frac{v}{1+w}, y=\frac{v w}{1+w}, z=u-v$.

Problem 9. Consider the region determined by the surfaces $x^{2}+y^{2}+z^{2}=4$, $x^{2}+y^{2}=3 z$.
a) Write an integral for the volume of this region using cylindrical coordinates, using the order $d z d r d \theta$.
b) Write the same integral now using spherical coordinates in the order $d r d \varphi d \theta$, where φ represents the angle which starts from the z axis.

Problem 10. Make the change of variables $u=x y, v=\frac{y}{x}$ to find the volume of the solid bounded by the surfaces $z=x+y, x y=1, x y=2, y=x, y=2 x, z=0$ $(x>0, y>0)$.

Problem 11. Consider the following triple integral

$$
\begin{equation*}
I=\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \int_{-\sqrt{\frac{1}{2}-x^{2}}}^{\sqrt{\frac{1}{2}-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z d y d x \tag{6}
\end{equation*}
$$

a) Draw the region of integration.
b) Write I in spherical coordinates, using the order of integration $d r d \varphi d \theta$, and the order $d \varphi d r d \theta$. In both cases θ is the angle that starts from the x axis.

