Problems Curves and Geometry in Space

This material corresponds roughly to sections $12.5,13.1,13.2$ and 13.4 in the book, as well as the study guide "Curves and geometry"

Problem 1. [this problem will not be evaluated on the exam, only on the written homework © \cdot Let $\mathbf{r}(t)=a \cos t \mathbf{i}+b \sin t \mathbf{j}$ for $0 \leq t \leq 2 \pi$ parameterize the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
a) Compute the curvature $\kappa(t)$ of the curve.
b) Suppose that $a>b$. When is the curvature maximal? Try to think geometrically why this must be the case.

Problem 2. [this problem will not be evaluated on the exam, only on the written homework © $]$

Notice that the graph of a function $y=f(x)$ can be considered as a curve on the $x y$ plane

$$
\begin{equation*}
\mathbf{r}(x)=(x, f(x)) \tag{1}
\end{equation*}
$$

Show that the curvature of this curve is always

$$
\begin{equation*}
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}\right)^{2}\right)^{3 / 2}} \tag{2}
\end{equation*}
$$

Problem 3. [this problem will not be evaluated on the exam, only on the written homework © ${ }^{\text {] }}$

Compute the curvature κ for the twisted cubic

$$
\begin{equation*}
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k} \tag{3}
\end{equation*}
$$

Problem 4. Let $\mathbf{r}(t)$ represent the trajectory of a curve. Show that at a local maximum or minimum of $f(t)=\|\mathbf{r}(t)\|$, we have that $\mathbf{r}(t)$ is perpendicular to $\frac{d}{d t} \mathbf{r}(t)$. Hint: see also Kepler's problem on the written assignment.

