MATH 251, Mariano Echeverria

Integration of Vector Fields

This material corresponds roughly to sections 16.1, 16.2, 16.3, 17.1, 17.2, 17.3 in the
book.

Line integral
If F is a vector field defined along a curve C', the line integral (or work) of the vector
field along the curve is

/CF~dr (1)

Using a parametrization of the curve we can compute it as

to
/ F - vdt (2)
t1

Figure 1: Line integral

Example 1. Find the work of the vector field F = (y — 2%)i+ (z — y*)j + (z — 2% k
along the curve r(t) = ti +t%j + 3%k , for 0 < ¢ < 1.



For points along the curve we have

r=t y=t> 2=t
Therefore, the values of F along the curve are
F(t) = (¢ = )i+ (£ — ¢+ (¢t — )k = (= )i + (t — )k

The velocity is

dr 2
= — =i+ 2tj+3t’k
v a 14 2t) +
SO

F-v=(—thj+ t—tOk) - (i+2tj+3t°k) = 2t* — 26> + 37 — 3¢

and the formula 2 says that the work is

! ! 4 5 3 8 25 26 34 39 1
/ (F-v)dt:/ (2t* —2¢° 4+ 3% — 3t°) dt == <t -t —t> 0=
0 0
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Example 2. Find the work done on a particle moving from (0,0) to (3,3) along the
trajectories C7, Co shown below. Take F = (22y + 1)i

T(Oﬁ) (3,3)
3‘ C1,2
2
C1,1 Cao
1
Ca,1 > (3,0)
070) 0 1 2 3
1L

Figure 2: Line integral along different trajectories

We need to parameterize C1,Csy. For C; we consider the segment from (0,0) to (0, 3)
(called C 1) and the second segment which goes from (0, 3) to (3, 3) (called C12).
On C1,1 we have z = 0 and we can take y as a parameter:

ro,(y)=yj 0<y<3 (8)
On (1,1 the value of F
F=i 9)
Since J
jyrcl’l =] (10)

The work done along C 1 is

3 d 3
/ F-dr:/ F-rclldy:/ Ody =0 (11)
0171 0 dy ’ 0

For C} 2 we have y = 3 and we take x as a parameter, that is,

ro () =zi+3j 0<2<3 (12)
On (12 the value of F is
F=(32+1)i (13)
Since
d .
%I'CL2 =i (14)

The work done along C' 2 is

3 3
d
/ F-dr:/F-r012d:L‘:/ (32° + 1) dz = 30 (15)
Ci,2 0 dx ’ 0



The total work along C is the sum of these two works, i.e,

/F-dr:/ F-dr—l—/ F-dr =30
ol Ci Ci,2

(16)

For Cy we consider the segment from (0,0) to (3,0) (called C5 ;) and the one from

(3,0) to (3,3) (called Cy2).

On (5,1 we have y = 0 and we use x as parameter, that is,
re,, (x) = i 0<xz<3

On Cy; the value of F is
F=i

Since

d

—ro,, =1
d.ﬁU 2,1

The work along Ca 1 is

3 d 3
/ F-dr:/F-r021d:L‘:/1dx:3
Can 0 de ™% 0

On Cy2 we have x = 3 and we can use y as a parameter
ro,,(y) =3i+yj 0<y<3

On (5 the value of F is
F=09y+1)i

Since
d

dierzz = j

The work along the curve Ca 9 is

5 d
F-dr:/F~rc dy=20
/0272 0 dy ~*?

The total work along Cs is the sum of the works, that is

/F-dr:/ F‘dr—i—/ F.-dr=3
Co Ca1 Cz,2

(17)

(18)

(24)

(25)

In particular, notice that the work depended on which trajectory we chose!




Conservative vector field:

= A vector field F is a conservative vector field if its line integral is the same for
all curves connecting two arbitrary points P, (). That is, the work is trajectory
independent. Equivalently, the line integral of F along any loop must vanish,
which we write as

%F-dr ~0 (26)

= A scalar field V is called a potential function for the vector field F if
F=VV (27)
(the physicists would write this as F = —VV)

< In the case F can be obtained from a potential function V as above then F will be
automatically a conservative vector field and moreover the line integral is simply

/Q F.dr = V(Q) - V(P) (28)

P

< Whenever the region we are studying is simply connected (every loop can be
contracted to a point within this region), a vector field F will be conservative if
and only if such a potential function V' can be found. Notice that V will not be
unique, but rather different potential functions differ by a constant. In order to
find a candidate V', we must solve the equations

o _ .V

ov

where we wrote F = i + Fyj + Fsk.

C1

Figure 3: Conservative Vector Field



Example 3. The vector field F = (x + y2) i+ (2a:y + 3y2)j + k is conservative. Find
the potential functions.
We must solve

%:x—i—yQ (?;:2my+3y2 %—Z:l (30)
(1) ) (3)
Integrating (1) with respect to x we obtain
22
V= ?—i-y?x—i-f(y,z) (31)

where instead of a number ¢ as a constant of integration we use an arbitrary function
f(y, z) since we treated y, z as constants. Differentiating this formula for V' with respect
to y we have

v 9f(y, =)
=2 2
By yx + 3 (32)
comparing with (2) we conclude that
af(ya Z) _ 2

Integrating with respect to y we have

fy,2) =+ 9(2) (34)
where g(z) is our “constant” of integration. In this way

2

V= % +ay’ + 47 + g(z) (35)
comparing with (3) we obtain that ;
CTZ =1 (36)
Integrating with respect to z we find
g=z+c (37)

where c is truly a constant. In this way the potential functions are

2

Vz%—l—xyZ—i-ys—i—z—i-c (38)

Example 4. Determine whether F = (22 —3)i — zj + coszk is a conservative
vector field or not.
If F were conservative then 29 would have a solution. So we want to solve

v _ x—3 a—vz—z 8—V:cosz (39)
ox oy 0z
. ,

1) () 3)



Integrating (1) we obtain

V =12% -3z + f(y,2) (40)
Therefore
oy oy
comparing with (2) we obtain
9f(y,z)
S 42
o= (42)
Integrating with respect to y we obtain
fly,2) = —yz+g(2) (43)
Therefore
V =2% -3z —yz+g(2) (44)
Differentiating with respect to z
oV dg
=7 =~ 45
0z * 0z (45)

and comparing with (3) we obtain

0
‘?)(j) —cosz=y (46)
The last equation cannot be satisfied all the time, since the left hand side depends on
z while the right hand side depends on y. Therefore, the vector field is not conservative.

On a simply connected region, a vector field F is conservative if and only if

0 0 0 0 0 0
gyFl — %FQ @F3 — &FQ £F3 — &Fl (47)

When F = Fii+ Fyj is defined on the xy plane we just need to check the condition

El )
dy

F = £F2 (48)

Example 5. Evaluate the line integral f(} ydr + xdy + 4dz where C is the line
segment from (1,1,1) to (2,3,—1).
The vector field is

F =yi+aj+4k (49)
Since 5 5

— M =1=—F

dy ! or 2 (50)

0 0

ZF=0=—F 1

oy 3=0 0z 2 (51)



0 0

— Fh=0=—F 52
dx ° 9z ! (52)
the vector field is conservative. To find V' we must solve
ov oV ov
R e A | 53
or Y oy T B (53)
_— , N —
(1) (2) ®3)
Integrating (3) with respect to z we find
V=dz+ f(z,y) (54)
Differentiating with respect to y we have
ov. 0
dy dy
and comparing with (2) we have
Of(x,y)
= 56
ol =a (56)
integrating with respect to y we find
f(z,y) = 2y + g() (57)
Therefore
V=4dz+4+zy+ g(z) (58)
differentiating with respect to x
oV dg
A 7 59
ar Y * ox (59)
and comparing with (1) we obtain that
g(x) =c (60)
is a constant so the potential is
V(z,y,z) =4z +zy +c¢ (61)

Therefore the line integral can be obtained by evaluating the potential at the endpoints

/yda:+:vdy+4dz:/F-dr:/dV:V(2,3,—1)—V(1,1,1):—3 (62)
C C C

Notice that the final answer is insensitive to the constant of integration used.

Field Lines

A curve r(t) is a field line of a vector field F(z,y, 2) if at every time ¢, the tangent

vector v = % agrees with F at that point, that is,

(63)



Example 6. Find the field lines of the vector field F = —zi 4 yj.
We must solve the system

de _ 4y _
at ar Y
Notice that we can “solve” for dt as follows:
d
gt — 2 _ A
z Y

Working with the last two equations we obtain

_dr_dy

x Y
We integrate each side individually and find
—lnz=Ihy+c

In other words
xzy=C

where C is a new constant.
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Figure 4: Vector field lines



If F is a conservative vector field then,

F=VV (69)

Now, the potential function evaluated along a field line r(t) can be regarded as a function
of time

V(t) =V(r(t)) (70)
The chain rule then says that
dav dr
o = (WV)((t)) - - =F(r(t)) - F(r(t)) = IF(x(t))[I? (71)
Since the right hand side is never negative we conclude that
d
di‘t/ >0 along a field line (72)

In other words, the potential is always non-decreasing along a field lines. In particular,
unless F' vanishes at every point along a field line, there cannot be any field lines for a
conservative vector field which are closed loops since V' would necessarily have to decrease
as you travel back.

Moreover, recall that for an equipotential surface

V' = constant (73)

The gradient vector field VV gives the normal vector to these surfaces. Now, VV = F is
precisely the velocity vector of a field line, which means that field lines are perpendicular
to the equipotential surfaces!

< If a conservative vector field does not vanish at every point of a field
line then the field line cannot be closed loops.

< For a conservative field, the field lines are perpendicular to the equipo-
tential surfaces.

For example, the electric field produced by a particle with charge g centered at the
origin is

E = q e€r

= — 74
4dmeg r? (74)

where e, is the unitary vector in spherical coordinates and r = |r|. It is a good exercise

to verify that
qg 1
E=- -
v <47rso r> (75)

so the electric field is conservative. Our previous discussion implies that:

1. The electric field lines are never closed loops.

2. Since the equipotential surfaces are sphere centered at the origin, the electric field
lines are rays emanating from the origin.
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Figure 5: Green’s Theorem in the plane

Now we will discuss one of the major theorems of vector calculus. We will consider
a vector field F = Fji + Fbj, which we will think as a velocity vector field, so that at
the point (x,y) of some region R, F(x,y) represents the velocity of a fluid. The only
particles of the fluid that can escape the region R must go through the curve C.

We can break the velocity of those particles into a tangent component and a normal
component to the curve. Clearly only the normal component is responsible for the escape
of the particles, while the tangential component is related to the vorticity of the fluid.

We will analyze first such a vorticity. For doing this we compute

ygF - Tds (76)

where ¢ means our curve is closed. Using the definition of the tangent vector we have
that
dr

%F-Tds:ygF-ds:%F-dr (77)
c c ds c

which means that computing the vorticity of F is equivalent to compute the work of F
along the curve C.

To find Green’s theorem, we analyze first the case of a very small rectangle centered
at the point (z,y) with sides of length 2Ax and 2Ay. Clearly

%F-dr:/ F-dr+/ F-dr+/ F-dr+/ F -dr (78)
C C1 Co Cs Ca

where we are using the counter clockwise direction. Each curve is parameterized as

Ci r(t)=ti+(y—2Ly)j z—Lrx<t<z+Ax
Co r(t)=(x+An)i+t] y—Ay<t<y+Ay
Cs r(t)=ti+(y+2Ly)j] z+Lle<t<z—Ax
Cys r(t)=(x—Lx)i+t] y+ALAy<t<y—-~»Ay

(79)

so the computation of the work becomes

z+Ax y+Ay z—Ax y—Ay
§£ F . -dr = / Fidt + / Fodt + / Fidt + / Fydt (80)
C z—Ax y—Ay z+Azx y+Ay

We will approximate each integral using the value the vector fields takes in the middle

11



of the trajectory, namely

G F - dr ~ Fy(x,y — Ay)(20z) + Fa(z + Az, y) (20y) (81)
—Fi(z,y + Ay) 20z) — Fa(x — Az, y)(28y)

Rearranging things we find that

Fo F - dr ~ (Fi(z,y — Ay) — Fi(z,y + Ay)) (207) (82)
+ (Fo(z + Dz, y) — Fo(z — Az, y)) (2Dy)

Finally, we do a Taylor expansion to first order about (x,y) to obtain

oF OF:
515 F.-dr~4 [— L(@,y) + 2(2,y) Nxy (83)
C 8y Oz
Since the are of the rectangle 4Ax /Ay this means that the vorticity per unit are is
OFy(z,y)  OF (z,y) . ¢ F-dr
=L — = 1 S 4
ox oy A0 AA (84)

The same calculations can be done using the zz or yz planes, so we just found

Curl of a vector field:
If F is a vector field, the curl of F is the amount of vorticity per unit area. It is

denoted V x F and defined as

f(VxF) = lim S n (85)

AS—0  AS
Here n is a unitary vector normal to the surface AS and C' is the curve which is the
boundary of the surface AS. We move along the curve using the right hand rule: if
your thumb points gives you the direction of motion along curve then as you close your

hand the remaining fingers point towards the vector n.
In cartesian coordinates the curl can be computing using the “determinant”

. (0B OB, (0F, OR\. (9B OR
VX E= (8y 82)1 <8w 82>J+(8:L' 8y>k

i j k
92 90 9
Jxr Oy 0z
Fy Fy Fj

12
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Figure 6: Curl over a small rectangle
Example 7. Compute the curls of F = —yi + zj and G :;32/:;?

From the figures shown below it looks like both vector fields are spinning so one might
assume that the curl of both fields will be non-zero in both situations. However, notice
that

_(0x (=), _
VXF(ax 5 >k2k (87)
while
2 .2) _ 9,2 2 . 2) _ 9,2
VxG = O(f = N\ _ 9( —y k:(fn +y7) —22° + (2* +¢?) 2yk:0
Or \ 22 + y? oy \ 22+ y? (22 + y2)?
(88)

for any (x,y) which is not the origin for the last vector field. So what is the difference
between both vector fields?

The important thing to remember is that the curl indicates the infinitesimal rotation
near a point, that is, it computes whether there is a net rotation or not at each point.

To compute V x F at the point (z,y,2) we place a small paddle wheel at the point
(z,y,2) and we determine whether it starts rotating about an axis. If a point P on the
paddle wheel starts rotating with angular velocity w then its velocity is (here we choose
coordinates so that P is the origin)

V=wXr (89)
Therefore, in this case
i j k
0 o) 0
VXv= 9z By 92 = 2w (90)

Wo2 — W3y W3Tr — Wiz W1y — Wk

Hence we can think of the curl of a vector field as twice the angular velocity of a paddle
wheel.
Returning to our vector fields F and G, notice that ||F| = /22 + 3% while G =

13



\/ngy"" Therefore, the torque on the paddle wheel produced by F is about (ignoring

the sine of the angle for our analysis) ||F||||r|| = 22 + %2, while the torque induced by
G is about ||G||||r|| = 1. Therefore, we see that in the first case the torque does change
with the position (z,y), which is why the paddle wheel can start rotation, while in the

second case the torque at different points has about the same magnitude, which is why
they cancel each other out and the paddle wheel will not try to rotate.

%\\\\\

;\\\\\
\
4
!
!
/
/
////4
/////
N \
! !

|

}
by A
\ \ \ \\Q//’/ 7 1

]

S o4y . e =~ N N v
Lo s
l///?i
LT N N

NNNTT
NN

gg////g

Figure 7: Vector fields F and G

Now that we know how to compute the curl, we can return to our problem of computing

the quantity
yf F - dr (91)
C

We already know that on sufficiently small rectangles with sides Ax, Ay

%F-dr://(VxF)-ndS (92)

where n = k and dS is the area differential. If our rectangle is not small we can break

it into smaller rectangles. If C7, Co, C3, Cy, C' are the boundary curves of Ry, Ra, Rg,
Ry, R then

14



R il el

%F-dr—yg F-dr—i—;lg F-dr+§£ F‘dr—i-jlg F -dr (93)
C Cl CQ C3 C4

since the internal contributions cancel each other out since they are travelled twice in
opposite directions. Assuming the sub-rectangles are small enough we can use 92 and
conclude that

¢ F-dr =
[ Ja (VX F)-ndS + [ [5 (V< F)-ndS+ [ [ (VxF)-ndS+ [ [ (V x F)-ndS
= [ [ (V xF)-ndS
(94)
An arbitrary region can then be approximated by rectangles so we just found Green’s
theorem!

Green’s Theorem: tangential version

Let R be a region on the xy plane which is bounded and simply connected. If F is a
differentiable vector field defined everywhere on R and C' is the boundary curve of R
which we assume to be closed without self intersections, then

%CF-dr://R(VXF)-ndS (95)

Letting F = F1i+ Fbj and dr = dzi + dyj we can write this as

F, OF
§1§ Fidz + Fody = // (82 - 81) dxdy (96)
o R\ Oz oy

where we travel along the curve C' in such a way that R is to our left as we
move along C.

Example 8. Verify Green’s theorem for the rectangle F(z,y) = (z — y)i + zj
and using the region R bounded by the circle r(t) = costi+sintj, 0 <t <27

We will compute both sides of Green’s theorem and check that they agree. For the left
hand side we use the parameterization of the circle given to us.

15



Since x = cost we have dr = —sintdt and for y = sint we have dy = costdt . Thus

2T 2T
%FldaH—ngy = / ((cost —sint) (—sint) + cost (cost)) dt = / (1 —costsint)dt =27
0 0

(97)
The right hand side of 96 can be computed using polar coordinates

0F, 8F1> /2“/1
//R<a$ 8y 4 0 0 ( )PPQO ( )

Figure 8: Green’s theorem on the circle

Example 9. Use Green’s theorem to compute gS (ZEQ + y2) dx + xydy where the curve

has three pieces: the part of the parabola y = 22 from (0,0) to A = (2,4) ,the segment
from A to B = (0,4) , and the segment from B to the origin O.
Thanks to Green’s theorem, rather than computing three line integrals, we just find

0,4) @4

0,0

16



Green’s Theorem can also be used to compute the area of a region R. Just take the
vector field F = —%yi + %azj en 96 in order to obtain

1
B §£ —ydx + xdy = // dedy = A (100)
R

The area of a region R can be computed as

A= // dxdy = ;yg—ydx + zdy (101)
R

One can also use the formulas

A= %Ldy = — ;lgydw (102)

Example 10. Use Green’s theorem to compute the area of the ellipse r(t) = acosti +

bsintj with 0 <t < 2.
Taking x = acost and y = bsint we have dy = bcostdt so using the second formula

for the area ¢ xdy stated above, we need to compute

2T
A= / (acost) (beost)dt = mab (103)
0

In the case the region R is not simply connected, it is possible to adjust Green’s
Theorem.

Figure 9: Green’s theorem on a region with holes

For example, to apply Green’s theorem to the region R shown above we work with
R* = RU Ry U Ry , which is simply connected. Clearly

(VxF) -ndS =
J Jge (V X F) - ndS — ff‘ VX%?) nds — [ [, (V x F) -nds (104)

and since each of the regions R*, R;, Ry is simply connected we can apply Green’s theorem

17



here and we find that

[ Jg(VxF)-ndS= [, F-dr— [, F-dr— [ F-dr

F.dr (105)

= fCOU01UCQ

where we traveling the curve as shown in the figure.

Stoke’s theorem can be considered as the generalization of Green’s Theorem in the
case the region is not on the plane, and rather represents a surface in space. In this case
we need to specify what the normal vector is supposed to be. The two natural candidates
are n = :I:%, assuming the surface was defined by the equation f(x,y,z) = 0.

On thgrotger hand, if we parameterize the surface in terms of u,v then we can use
n = i%. However, there are cases where the parameterization only works for

Or\ Or
ou " Ov

certain regions of the surface and where we need to check if we can choose a normal

vector in a consistent way. In way, there are one sided surfaces like the Mobius strip

where this is not possible, although they need not concern us in this class.

18



Stokes’ Theorem and Conservative Vector Fields
A surface S is orientable if it has a nowhere vanishing vector field n. If S is defined
as f(z,y,z) =0, we can take

Vf

n=+ " (106)
IV f]
or
ou ov

whenever the surface is parameterized by u, v.
Stokes’ theorem states that for an orientable surface S which is simply connected

with boundary C
%F-dr—//(VxF)-ndS (108)
C S

where the curve is oriented using the right hand rule.

Notice that if F is a conservative vector field then the left hand side of Stokes’ theorem
vanishes, regardless of the curve chosen. The only way for this to occur is if V x F
vanishes as well. In other words:

A vector field F defined on a simply connected region is conservative if and
only if VX F =0.

Example 11. Using Stokes’ theorem, find I = [ [4 (V x F)-ndS , where F = yi+zj+
(y + z) k and S is the portion of the surface 2x +y + z = 2 above the first octant and n
is the unitary normal vector to the surface, with non-negative z component.

We can take 5 ) )

n= it itk (109)

//S(VXF)-ndS:/ler (110)

where the line integral is taken as shown.

Hence by Stokes’ theorem

19



(0,0,2)

Cs
Gy

(0,2,0)

Gy
(1,0,0)

The curve C1 is the intersection of the plane 2x + y + z = 2 with y = 0, that is,
2x + z = 2. The parameterization is (x,0,2 — 2z) with 0 <z <1 so

1 1
/ F'dr:/ (a:j+(2—2:v)k)-(i—2k)d$:/ —4 4+ dxdr = -2
Cq 0 0

(111)
The curve Cs is the intersection of the plane 2z + y + z = 2 with z = 0, that is,
2x + y = 2. The parameterization is (z,2 — 2z,0) with 0 <
account the orientation we are using we find that

xz < 1 and taking into

1 1
/C2F-dr:—/0 ((2—2x)1+3:3+(2—2:c)k)~(1—2_])d:c:/0 4r —2dr =0 (112)

The curve Cj is the intersection of the plane 2x +y+ 2z = 2 with x = 0, that is, y+ z = 2.
The parameterization is (0,2 — z,2) with 0 < z < 2 so
2
/ F-dr_/ (2= 2)i42K) - (=] + K)dz = 4
C: 0

From this we conclude that
//(VxF)-ndS:2
S

Example 12. Use Stokes’ theorem to evaluate fC —y3dx + 23dy — 23dz where C is the
intersection of the cylinder 2 4+ y? = 1, and the plane x + y + z = 1. Assume C is

(113)

(114)

oriented counterclockwise with respect to the zy plane
Define

F=—’i+2% -2’k
It is easy to find that

(115)
VxF=3(x2+y2)k

(116)

20



On the other hand, we write the normal vector as n = nii 4+ nsj + nsk so that
(VxF) -n=3(2*+y%) ns (117)

From the figure

-3
3

2

we can take our surface to be the disc whose boundary is the ellipse shown in blue.
Since the disc belongs to the plane x +y + 2z = 1 we can take the normal vector of the
plane as the normal vector for the disc and use

Ly + L + L (118)
n=—i+-—=j+ —=
NERARVE ey
Equivalently, we could have parameterized the disc using x,y as

21



so that

Or Or
% X 8711/ - (1707 _1) x (07 1, _1) - (]—7 1a 1) (120)
In any case,
! (121)
ny =——
SRV}
and
dS = V/3dxdy (122)

Since (V x F) - n = 3 (2% 4 y?) n3 we obtain
(V x F) - ndS = 3 (2% + ¢*) dody (123)
and thanks to Stokes’ theorem we conclude that

/ —y3dx + 23dy — 22dz = 3 // (xz + y2) dxdy (124)
C

To integrate the right hand side we use polar coordinates

2w 1
3/ / (r*) rdrdf = om (125)
0 0 4

Example 13. Verify Stokes’ theorem for the upper hemisphere of the sphere 22 + y? +
22 =9, the its boundary 2% +y? = 9,z = 0 and the vector field F = yi — 3.

First of all a parameterization for the circle is r (¢) = 3 cos pi+3sin j with 0 < ¢ < 27
so the work is

2m
/ (3sinpi — 3cos pj) - (—3sinpi+ 3cosp) dp = —187 (126)
0
We can find that V x F = —2k and to parameterize the hemisphere we use spherical
coordinates,
r (0, ) = 3sinf cos i + 3sin b sin pj + 3 cos bk (127)
A normal vector to the surface is
i j k
rg xr,=9| cosffcosp cosflsing —sinf | =9 (sin2 6 cos @, sin? @ sin ¢, cos 0 sin 9)
—sinfsing sinfcosp 0
(128)
which we normalize as
— 0 X Ty _ (sin 6 cos ¢, sin @ sin ¢, cos 0) (129)
rg x r<p|
Thus the surface differential is
dS = 9sin 0dfdy (130)
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and we must integrate

2r T
/ /2 (0,0, —2) - (sin cos ¢, sin 0 sin ¢, cos ) 9 sin OdOdyp
o Jo

27 I
=— 18/ /2 sin § cos 8dfdp
o Jo

_ 187r/2 sin (20) do
0

= — 187

as desired.

Now we return to our model of the fluid escaping a region R. As we mentioned before,
the normal component to the velocity is the one responsible for the escape of fluid through
the boundary of the surface.

Figure 10: Green’s theorem on the plane

In fact, if F = Fji+ Fbjand T = %i + Z—g_] is the tangent vector the it is easy to check
that !

n=-"i——j (131)

is the desired vector (given our orientation conventions).

In fact, n = —N where N was the normal vector we defined when we studied curve.
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Flux
If C is a curve on the plane and F = Fii+ Fbj is a vector field the flux of F along the
curve C is

¢ F - nds = §I§ Fidy — Fydx (132)
C C

As before, to find the flux we start analyzing a very small rectangle centered at (x,y)
with sides Az, Ay.

(x-Ax,y) (x+Ax,y)
C2

Figure 11: Flux on a rectangle

Clearly

%F-nds:/ F-nds+/ F-nds+/ F-nds—i—/ F - nds (133)
C Cl CQ 03 C’4

where we are orienting things counter clockwise. Again, we use the mid point approxi-
mation for the values of the vector field along each curve, which means

Jo, F-nds = —Fy(z,y — Ay) (242)
Je, F-nds = Fi(z + Az, y) (28y)

134
Je, F-nds = Fy(2,y + Ay) (2407) (134)
Jo, F-nds ~ —Fi(z — Az, y) (20y)
Adding all these contributions and doing a Taylor expansion to first order
* F F o
gé F-nds~4 <8 1(z,y) + 0 Q(L’y)> Axly (135)
JC Ox dy

Since the area of the rectangle is 4Ax/A\y we can use the previous computation to define
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the divergence V - F of F as the flux per unit area

OF,  OF,
F=_1472 1
\Y 5 5 (136)

As in the case for the vorticity, when the region is not a small rectangle we can break
it into such pieces and the internal contributions will cancel. Therefore we found the
second version of Green’s theorem.

Green’s Theorem: Normal Form
Let R be a region satisfying the same conditions as in the statement of the tangential
form of Green’s theorem. If F = Fji+ Fbj is a vector field defined on R then

§I§ F - nds = // V - Fdzdy (137)
C R

where n is a normal vector to the curve which points outward and the orientation of
the curve is such that the region is to the left of our motion. It can also be written as

(R 0B,
ychldy—ngbL—//R<agj + ay)ddzdy (138)

Example 14. Find the divergence of F = zi + yj and G = f;izé

In this case the vector fields look like

INNNANNV

N N N N R O sl I (U e
N N N Y T R A A i el L S

Tse s~~~ N A |/ s 7w - \\\\\¢///
I T - =N S
—— = N —— — »,,//¢\\\‘
P A A NN NI NN - T v NN T
H/////i\\\\\ [

< /b VNN NN ) T e e
T/ /7 /1 VNN ‘

Figure 12: Vector fields F and G

Recall that at each point (z,y), V - F measure whether there is a net loss or gain of
mass (or fluid). It is easy to compute that
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_(O0x  Oy\ _
V-F_<8x ay>_2 (139)

which can be interpreted as saying that each point is a net source of fluid.
On the other hand,

2 02 902 a2 12— 92
V-GZQL—I—Q Yy _ Tty :U—i—x;—y v
ox x2+y2 y x2+y2 (:L'2+y2)

(140)
which again means that except at the origin (where nothing is defined), there is no net
loss or gain of mass (or fluid).

Figure 13: Flux through a surface

Divergence Theorem
The divergence theorem generalizes Green’s normal theorem to surfaces in space. As-
suming the surface S is orientable, we define the flux @ through the surface as

@://SF.nds (141)

The divergence V - F of a vector field is the density of the flux per unit volume
, J J¢F -ndS
V- F = 1 e 142
(2,9,2) = lim == (142)

where AV is the volume of a small region containing (x,y, z) while S is the boundary
of AV. The divergence is a scalar field and if F = Fji + Fbj + F3k then

_OF,  OF, OF;

B it A Tl il
v 8w+6y+8z

(143)

= IV -F(z,y,z) >0 (V-F(z,y,2) <0) then (z,y, z) is called a source (sink).

= If V-F =0 at every point (z,y, z), we say that F is a solenoidal field.

Gauss’ theorem states that if R is a simply connected 3d region and its boundary S
is closed without self intersections then

//SF-ndS:///RV-FdV (144)
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Example 15. For F = 2zi + 9%j + 2’k and S the unit sphere 22 + y? + 22 = 1,
compute [F-ndS
Using Gauss’ theorem and the fact that V- F = 2 4 2y + 22 we need to compute

///(2+2y+2z)dv (145)

Using spherical coordinates this is

2r pm rl
2 / / / (1 + rsin @ sin @ + r cos ) r2 sin Odrdfdy (146)
o Jo Jo

The second and last terms vanish after integrating sin¢ and cosfsinf respectively.

Therefore the answer is
27 T 1
2/ / / 2 sin Odrdfdy = Sl (147)
0 o Jo 3

Example 16. Verify the divergence theorem for F = 222yi — y?j + 422%k and the
region bounded by 4> + 22 =9,z =0 and = = 2.

To compute the flux we use the divide the surface into the “lids”, x = 2, = 0 and the
cylinder y? + 22 =9 .
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a) For x = 2, F = 8yi — y%j + 822k and we can take n =i . Using polar coordinates

2 3
/ / (8p cos pi — p? cos? pj + 8p? sin? cpk) -ipdpde
o Jo
2 3
= / / 8p cos wpdpdp
o Jo
=0

b) For = 0, F = —3?j and we can take n = —i (recall that the normal vector must
point outwards). Using polar coordinates

27 3
/0 /0 (—p” cos® pj) - (=) pdpdep

2 3

:/ / 8p cos ppdpdyp
o Jo

=0

¢) Finally, for the cylinder y? 4+ 22 = 9 we take the normalized gradient as n, that is,
_ 2yj+2z2k
2 /y2 + 252

Any point on the cylinder can be parameterized as (z,y,z) = (x,3cos p, 3sinp) so the
surface differential becomes

- %j + 2K (148)

i
3

i J k
Ity xry|=|1 0 0 = (0, =3 cos ¢, —3sinp)| =3 (149)
0 —3siny 3cosyp

dS = 3dzdy (150)

Hence the flux is

2m 2
/ (63:2 cos p, —9 cos? ©, 36z sin? Lp) - (0, cos p, sin ) 3dxdp
o Jo
2 2
=3 / (—9 cos® ¢ + 36 sin® cp) dxdp
o Jo
2w
=3 / (—18cos® p + 725sin® ) dip
0

Since sine and cosine are of period 27 then

2 s
3/ (—18 cos® @ + 72sin? cp) dyp = —54/ (C083 © — 4sin® cp) dy (151)
0

—T

Using that sin is an odd function then sin® ¢ is an odd function as well, so only the first
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term contributes

™ ™
—54/ (0053 ¢ — 4sin® ¢) dp = —54/ cos® dyp (152)
—r -7
Using the identity
3sinax  sin3ax
3
dx = 1
/cos axdx 1a + 194 (153)

we find that this integral is zero as well and so the flux vanishes.
On the other hand, the divergence is

V-F =4xy — 2y + 8zz (154)

We use cylindrical coordinates (with the roles of the variables interchanged) so that
y = pcosy, z = psiny . We then need to integrate

2 3 2
/ / / (4zp cos p — 2p cos ¢ + 8xpsin ) pdrdpdy (155)
o Jo Jo

which you can check will vanish as well, verifying Gauss’ divergence theorem.
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