Additional Problems for Multivariable Calculus

Mariano Echeverria

1 Vectors and Curves

1. Two lines on the $x y$ plane either intersect at a point or are parallel. a) When you have two lines in 3d space (so $x y z$ space), what are the possibilities? b) What about two planes in 3d space? c) What about three planes in 3d space? d) Or four planes in 3d space? e) What about a line and a plane in 3d space?
2. Two lines on the $x y$ plane determine a unique line passing through these points. a) Is this still true in 3d space? b) How many points do you need to specify a plane in 3d space?
3. Suppose \mathbf{v} is a vector with certain physical units. For example, if \mathbf{v} were a velocity vector then its units would be length/time. How are the units of $|\mathbf{v}|$ related to the units of \mathbf{v} ? What are the units of $\frac{\mathbf{v}}{|\mathbf{v}|}$?
4. What is the line of intersection between the $x z$ and $y z$ planes?
5. What does the equation $x=3$ correspond to if a) x is the only variable being considered, b) x, y are the only variables being considered, c) x, y, z are the only variables being considered.
6. What does the equation $x^{2}+y^{2}=4$ correspond to if a) x, y are the only variables being considered, b) x, y, z are the only variables being considered.
7. Suppose \mathbf{v} is a vector on the $x y$ plane different from $\mathbf{0}$. Then $\mathbf{v}=|\mathbf{v}| \frac{\mathbf{v}}{|\mathbf{v}|}$ is known as the polar decomposition of the vector. Can you think of a reason why this name is given to the previous equation? Hint: think of complex numbers.
8. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}$ are two vectors and \mathbf{u} another vector such that $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{1}=3 \mathbf{i}-5 \mathbf{k}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}_{2}=2 \mathbf{j}+7 \mathbf{k}$. Find a) $\operatorname{proj}_{\mathbf{u}}\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)$, b) $\operatorname{proj}_{\mathbf{u}} 3 \mathbf{v}_{1}$ and c) $\operatorname{proj}_{3 \mathbf{u}} \mathbf{v}_{2}$.
9. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are three different vectors. Does the expression $\mathbf{v}_{1} \cdot \mathbf{v}_{2} \cdot \mathbf{v}_{3}$ make sense? What about $\mathbf{v}_{1} \times \mathbf{v}_{2} \times \mathbf{v}_{3}$? What about $\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)$? Is the last expression the same as $\mathbf{v}_{1} \times\left(\mathbf{v}_{2} \cdot \mathbf{v}_{3}\right)$, or the same as $\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right) \times \mathbf{v}_{3}$?
10. If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then does $\mathbf{v}=\mathbf{w}$?
11. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$
12. T / F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$.
13. T/F If \mathbf{a} and \mathbf{b} are unit vectors, then so is $\mathbf{a} \times \mathbf{b}$.
14. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}=0$.
15. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a}+\mathbf{b}\|=\|\mathbf{a}\|+\|\mathbf{b}\|$.
16. T/F If \mathbf{a}, \mathbf{b} are two arbitrary vectors then $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{b} \times \mathbf{a}\|$.
17. What curve do you get by intersecting the sphere $x^{2}+y^{2}+z^{2}=4$ with the plane $x=y$?
18. Suppose a particle is moving with position vector $\mathbf{r}(t)$ and velocity vector $\mathbf{v}(t)$, and acceleration $\mathbf{a}(t)$. a) if $\mathbf{v}(t)$ is constant, must $|\mathbf{v}(t)|$ be constant? b) if $|\mathbf{v}(t)|$ is constant, must $\mathbf{v}(t)$ be constant? c) if $\mathbf{v}(t)$ and $\mathbf{r}(t)$ are orthogonal vectors, must $\mathbf{a}(t)$ and $\mathbf{v}(t)$ be orthogonal?
19. Find the intersection between the sphere $3 x^{2}+y^{2}+z^{2}=4$ and the cylinder $y^{2}+z^{2}=1$.
20. T/F Suppose that a GPS satellite is orbiting the Earth in such a way that its distance from the planet remains constant. Then the velocity vector of the satellite is always perpendicular to its position vector.
21. Suppose that $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ are two curves which intersect at a point P. If $P=\mathbf{r}_{1}\left(t_{1}\right)$ and $P=\mathbf{r}_{2}\left(t_{2}\right)$, does this mean that $t_{1}=t_{2}$?
22. Suppose that $\mathbf{r}_{1}(t)$ is the equation of a curve and one defines $\mathbf{r}_{2}(t)=\mathbf{r}_{1}(\lambda t)$ for λ a positive constant (basically \mathbf{r}_{2} is using a different time scale than the one used for \mathbf{r}_{1}). How is the velocity vector of \mathbf{r}_{2} related to the one of \mathbf{r}_{1} ? What about the acceleration vectors? If one defines $\mathbf{r}_{3}(t)=\mathbf{r}_{1}\left(t-t_{0}\right)$, how is the velocity vector of \mathbf{r}_{3} related to the one of \mathbf{r}_{1} ? What about the acceleration vectors?
23. Suppose $\mathbf{r}(t)=R \cos (\omega t) \mathbf{i}+R \sin (\omega t) \mathbf{j}$ gives the equation of a circle. What are the units of ω if t is given in units of seconds, or more generally, time? What values t must take if we want $\mathbf{r}(t)$ to give a parametrization of the circle? The period of $\mathbf{r}(t)$ is the smallest positive number T such that $\mathbf{r}(t+T)=\mathbf{r}(t)$. What is T in this situation?
24. Is the velocity vector $\mathbf{v}(t)$ of a curve $\mathbf{r}(t)$ always perpendicular to the acceleration vector $\mathbf{a}(t)$?
25. Find the point on the parabola $y=x^{2}$ which is closest to the point $(2,1 / 2)$. ANS: $(1,1)$
26. Let O represent the center of a circle, and A, B denote two points on the circle such that $\overrightarrow{A B}$ represents a diameter of the circle. If C is another point on the circle, show that $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are perpendicular vectors.
27. Show that the diagonals of a rhombus (a parallelogram with sides of equal length) are perpendicular.
28. Show that a parallelogram is a rectangle if and only if its diagonals have the same length.
29. Use the cross product to show that the area of a triangle with vertices $(0,0)$, $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)$ equals $\frac{1}{2}\left|a_{1} b_{2}-a_{2} b_{1}\right|$.
30. Show that for any number k, the plane with equation $x-2 y+z+3+k(2 x-y-$ $z+1)=0$ contains the line of intersection of the planes $x-2 y+z+3=0$ and $2 x-y-z+1=0$. Hint: there is a really fast way to do this!
31. Write a function of one variable which gives the distance between an arbitrary point on the line l with equation $a x+b y=c$ and the point $P=\left(x_{1}, y_{1}\right)$. Then use this function to show that the distance from the line l to the point P is

$$
\begin{equation*}
d=\frac{\left|a x_{1}+b y_{1}-c\right|}{\sqrt{a^{2}+b^{2}}} \tag{1}
\end{equation*}
$$

32. The acceleration of a particle in the plane is $\mathbf{a}=2 \mathbf{i}+8 \mathbf{j}$. a) Find the particle's position as a function of t if its velocity at time $t=0$ is $\mathbf{i}-\mathbf{j}$ and its position at time $t=0$ is $2 \mathbf{i}+3 \mathbf{j}$. b) Find the speed of the particle at time $t=1$. ANS: $\mathbf{v}(t)=(2 t+1) \mathbf{i}+(8 t-1) \mathbf{j}, \mathbf{r}(t)=\left(t^{2}+t+2\right) \mathbf{i}+\left(4 t^{2}-t+3\right) \mathbf{j}$. speed at $t=1$ is $\sqrt{58}$.
33. Suppose that $\|\mathbf{v}\|=7,\|\mathbf{w}\|=6$, and the angle between \mathbf{v} and \mathbf{v} is $\frac{2 \pi}{3}$ radians. Compute $\|2 \mathbf{v}-3 \mathbf{w}\|$. ANS: $2 \sqrt{193}$
34. Simplify the following expression if $\|\mathbf{v}\|=3$ and $\|\mathbf{w}\|=4:(\mathbf{v}+\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w})-2 \mathbf{v} \cdot \mathbf{w}$. ANS: 25
35. Find an equation for the curve which is the intersection of the plane $2 x+4 y+z=4$ and the surface $z=x^{2}+y^{2}$. ANS: $\mathbf{r}(t)=\left(3 \cos t-1,3 \sin t-2,(3 \cos t-1)^{2}+(3 \sin t-2)^{2}\right)$
36. Consider $P=(1,3), Q=(5,-1), R=(2,3), S=(x, 2)$ where x is unknown. a) Find $\overrightarrow{P Q}$ and $\overrightarrow{R S}$. b) Find the value of x so that $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ become parallel. c) Find a unit vector in the direction of $\overrightarrow{R S}$. ANS: $\overrightarrow{P Q}=(4,-4), \overrightarrow{R S}=(x-2,-1)$, $x=3, \frac{(1,-1)}{\sqrt{2}}$.

2 Differential Calculus for Functions of Several Variables

1. Suppose that the level curves of a function $z=f(x, y)$ consists of straight lines. Must the graph of f be a plane?
2. Suppose that $T(x, y, z)$ represents the temperature at the point (x, y, z), measured in Kelvin. What are the units of $\frac{\partial T}{\partial x}$? What about the units of $\frac{\partial^{2} T}{\partial x^{2}}$?
3. Suppose $f(x, y)$ is a function defined on the $x y$ plane. Is it possible for $f(x, y)$ to have only local maxima but no local minima? What about the converse: can a function have only local minima but no local maxima? If a function has a critical point which is a saddle point, must it have critical points which are either local maxima or local minima?
4. If (a, b) is a critical point of f (in the sense that $f_{x}(a, b)=f_{y}(a, b)=0$), is it true that (a, b) is a critical point of f^{2} ? How about the converse? Namely, if (a, b) is a critical point of f^{2}, does that mean that (a, b) is a critical point of f ?
5. True/False: if $\nabla f(a, b)=(0,0), f_{x x}(a, b)>0$ and $f_{y y}(a, b)>0$, then f has a local minimum at (a, b).
6. The Coulomb potential generated by a charge q located at the origin of the $x y$ plane is $V(x, y)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{x^{2}+y^{2}}}$, where ϵ_{0} is a constant. a) What is the domain of V ? b) What is the domain of V if it is considered as a function of x, y, z, namely, $V(x, y, z)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{x^{2}+y^{2}}}$?
7. Suppose $T(x, y)$ represents the temperature of the floor at the point (x, y). If we use polar coordinates $x=r \cos \theta, y=r \sin \theta$, we can think of T as a function of r, θ. Find $\frac{\partial T}{\partial r}$ and $\frac{\partial T}{\partial \theta}$ in terms of $\frac{\partial T}{\partial x}$ and $\frac{\partial T}{\partial y}$. We say that the temperature is isotropic if $\frac{\partial T}{\partial \theta}=0$. Is the function $T(x, y)=\frac{y}{x}$ isotropic? What about $T(x, y)=x^{2}+y^{2}$?
8. Suppose the domain of $f(x, y)$ consists of the rectangle $-1 \leq x \leq 1,0 \leq y \leq 1$, while the domain of $g(x, y)$ consists of the rectangle $0 \leq x \leq 1,-1 \leq y \leq 1$. What is the domain of $h(x, y)=f(x, y) g(x, y)$?
9. Suppose two level surfaces $f_{1}(x, y, z)=c_{1}$ and $f_{2}(x, y, z)=c_{2}$ intersect on a curve. What is an easy way to find the tangent vector \mathbf{v} to any point on this curve from ∇f_{1} and ∇f_{2} ?
10. T/F The function $f(x, y)=\left(1-x^{2}-y^{2}\right)^{1 / 2} \ln \left(x^{2}+y^{2}-1\right)$ has empty domain.
11. True/ False: If $\nabla f(x, y)=(0,0)$, then (x, y) is a local minimum or local maximum of f
12. True/False: For any unit vector $\mathbf{u}, D f_{-\mathbf{u}}(\mathbf{r})=-D f_{\mathbf{u}}(\mathbf{r})$
13. True/False: if $f(x, y)=\ln y$, then $\nabla f(x, y)=1 / y$
14. True/False: if f is differentiable at (a, b) and $\nabla f(a, b)=(0,0)$, then f has a local maximum or minimum at (a, b)
15. True/False: if $f(x, y)$ has two local maxima then f must have a local minimum
16. If $f(u, v, w)$ is a differentiable function and $u=x-y, v=y-z$ and $w=z-x$, show that

$$
\begin{equation*}
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=0 \tag{2}
\end{equation*}
$$

17. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. At the point $(1,2,1)$, find the rate of change of f in the direction perpendicular to the plane $4 x-4 y+7 z=3$, pointing away from the origin. $\mathrm{ANS}=2 / 3$
18. Let $f(x, y, z)$ be a differentiable function and suppose that $\mathbf{r}(t)$ is a path which lies on the surface $f(x, y, z)=17$. If $\mathbf{r}(5)=(1,4,2)$, show that $\mathbf{r}^{\prime}(5)$ is orthogonal to $\nabla f(1,4,2)$.
19. For $f(x, y)=A-\left(x^{2}+B x+y^{2}+C y\right)$, what values of A, B, C give f a local maximum of 15 at the point $(-2,1)$? ANS: $A=6, B=4, C=-2$.
20. Let \mathcal{S} denote the surface $x^{2}+y^{2}-3 z^{2}=10$ and $P=(2,-3,1)$, which is a point on \mathcal{S}. Find an equation for the tangent plane to \mathcal{S} at P. ANS: $-1=\frac{2}{3}(x-2)-(y+3)-z$
21. A function $f(x, y)$ has gradient $(-3,4)$ at the point $P=(-1,3)$. Write an equation for the tangent line at P to the level curve of f passing through P.
22. Suppose that a duck is swimming in a circle, $x=\cos t, y=\sin t$, while the temperature is given by the formula $T=x^{2} e^{y}-x y^{3}$. Find $\frac{d T}{d t}$ using the chain rule. ANS: $\frac{d T}{d t}=\left(2 \cos t e^{\sin t}-\sin ^{3} t\right)(-\sin t)+\left(\cos ^{2} t e^{\sin t}-3 \cos t \sin ^{2} t\right)(\cos t)$
23. Let $f(x, y)=\sqrt{(x-a)^{2}+(y-b)^{2}}$. Show that for any $(x, y) \neq(a, b)$, we have $\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}=1$
24. Find the point on the graph of $z=3 x^{2}-4 y^{2}$ at which the vector $\mathbf{n}=(2,3,1)$ is normal to the tangent plane. ANS: $\left(-\frac{1}{3}, \frac{3}{8},-\frac{11}{48}\right)$
25. Find the directional derivative of

$$
\begin{equation*}
U(x, y, z)=2 x^{3} y-3 y^{2} z \tag{3}
\end{equation*}
$$

at the point $P=(1,2,-1)$ in the direction toward the point $Q=(3,-1,5)$. ANS: $-\frac{90}{7}$
26. Use Lagrange multipliers to find the critical points of $f(x, y, z)=x+y+2 z$, subject to the constraint $x^{2}+y^{2}+z^{2}=3$. ANS: $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \sqrt{2}\right),\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-\sqrt{2}\right)$
27. Find the rectangular box of maximum volume with edges of length x, y, z if the sum of the lengths of the edges $x+y+z$ is 132 cm . ANS: $x=y=z=44$
28. Find the maximum volume of a box of rectangular base that must be inside the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. ANS: $\frac{8 a b c}{3 \sqrt{3}}$
29. Find the shortest distance from the plane $3 x-2 y-z=3$ to the origin using Lagrange multipliers. ANS: $\frac{3}{\sqrt{14}}$
30. Use the Lagrange Multiplier methods to prove that the shortest distance from the point (a, b, c) to the plane $A x+B y+C z+D=0$ is $\left|\frac{A a+B b+C c+D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$.

3 Double and Triple Integrals

1. Suppose $f(x, y)$ and $g(x, y)$ are continuous functions on the unit square $0 \leq x \leq 1$, $0 \leq y \leq 1$. Is it true that $\int_{0}^{1} \int_{0}^{1} f(x, y) g(x, y) d y d x=\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x\right)\left(\int_{0}^{1} \int_{0}^{1} g(x, y) d y d x\right)$
2. Suppose $\rho(x, y)$ has units of electric charge per unit area. What are the units of $\iint_{R} \rho(x, y) d A$? More generally, how are the units of $\iint_{R} f(x, y) d A$ related to those of $f(x, y)$?
3. If $\iint_{R} f(x, y) d A \geq 0$, does that mean that $f(x, y) \geq 0$ at every point of the region of integration R ?
4. True/False: the integral $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \sin \theta d \rho d \theta d \phi$ gives the volume of $1 / 4$ of a sphere
5. True/False: For any $a, b \in \mathbb{R}$ and a continuous function $f, \int_{0}^{a} \int_{0}^{b} f(x, y) d y d x=$ $\int_{0}^{b} \int_{0}^{a} f(x, y) d x d y$
6. True/False: If $f(x, y)=g(x) h(y)$ then $\iint_{D} f(x, y) d A=\left(\iint_{D} g(x) d A\right)\left(\iint_{D} h(y) d A\right)$
7. True/False: $\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} d x d y$
8. True/False: For any integrable function $f, \int_{0}^{a} \int_{y}^{a} f(x, y) d x d y=\int_{0}^{a} \int_{y}^{a} f(x, y) d x d y$.
9. Integrate $f(x, y)=6 y+16$ over the triangular region \mathcal{T} with vertices $(0,0),(2,4)$ and (10, 0). ANS: 480
10. Sketch the region of integration and write an equivalent integral with the order of integration reversed for the integral $\int_{0}^{2} \int_{x^{2}}^{2 x} x y d y d x$. Evaluate the integral in both forms. ANS: $\int_{0}^{4} \int_{y / 2}^{\sqrt{y}} x y d x d y=8 / 3$
11. Evaluate $\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) d x d y$. ANS $(1-\cos (1)) / 2$
12. Use a double integral in polar coordinates to calculate the area of the polygonal region with vertices $(0,0),(B, 0)$ and (B, H). ANS: $\frac{1}{2} B H$
13. Let E denote the region in the first octant that is bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=9$. Express the volume of E as an iterated triple integral in i) cylindrical and ii) spherical coordinates. Then evaluate both integrals. $\mathrm{ANS}=9 \pi(2-\sqrt{2}) / 4$
14. Let E denote the region inside the sphere $x^{2}+y^{2}+z^{2}=25$ and inside the cylinder $x^{2}+y^{2}=16 . \mathrm{ANS}=392 \pi / 3$
15. Let \mathcal{D} be the region in the first quadrant bounded by the curves $y=x, y=3 x$, $x y=1$ and $x y=3$. Evaluate $\iint_{D} x y d A$ using the transformation $x=u / v, y=v$. $\mathrm{ANS}=2 \ln 3$
16. Calculate the volume of the region \mathcal{W} inside both spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+(z-2)^{2}=4$. ANS: $10 \pi / 3$.
17. Let \mathcal{E} be the region inside the ellipse $2 x^{2}+2 x y+5 y^{2}=4$. Noting that $2 x^{2}+2 x y+$ $5 y^{2}=(x+2 y)^{2}+(x-y)^{2}$, apply the change of variables $u=x+2 y, v=x-y$ in order to find the area of \mathcal{E}. ANS $=4 \pi / 3$
18. Find the bounds for the region R determined by the curves $y=x^{2}$ and $y=$ $x+2$ and write $\iint_{R} f(x, y) d A$ in two different ways. ANS: $\int_{-1}^{2} \int_{x^{2}}^{x+2} f(x, y) d y d x$, $\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y$
19. Find the bounds for the region R determined by the curves $y=e^{x}, y=e^{-x}$, the vertical lines $x=-2$ and $x=1$. Write $\iint_{R} f(x, y) d A$ in the order $d y d x$. ANS: $\int_{-2}^{0} \int_{0}^{e^{x}} f(x, y) d y d x+\int_{0}^{1} \int_{0}^{e^{-x}} f(x, y) d y d x$
20. Find the bounds for the region R in the first quadrant determined by the curves $x^{2}+y^{2}=4$ and $y=-x+2$. Write $\iint_{R} f(x, y) d A$ in the order $d x d y$. ANS: $\int_{0}^{2} \int_{2-y}^{\sqrt{4-y^{2}}} f(x, y) d x d y$
21. Find $\int_{0}^{2} \int_{x^{2}}^{4} x^{3} e^{y^{3}} d y d x$. ANS: $\frac{1}{12}\left(e^{64}-1\right)$
22. Find $\int_{0}^{1 / 2} \int_{\sqrt{3} x}^{\sqrt{1-x^{2}}} 9 x d y d x$. ANS: $3\left(1-\frac{\sqrt{3}}{2}\right)$
23. For $a>0$, find the double integral

$$
\begin{equation*}
\int_{0}^{a} \int_{x}^{\sqrt{2 a^{2}-x^{2}}} x y(x+y) d y d x \tag{4}
\end{equation*}
$$

by switching to polar coordinates. Your answer will depend on a. ANS: $\frac{4 \sqrt{2}{ }^{5}}{15}$
24. The integral $\int_{0}^{\pi} \int_{2 \sqrt{2}}^{4} \int_{0}^{\sqrt{16-r^{2}}}\left(16 r-r^{3}-z^{2} r\right) d z d r d \theta$ is given in cylindrical coordinates. Write (but do not compute) the integral using spherical coordinates. ANS: $\int_{0}^{\pi} \int_{\pi / 4}^{\pi / 2} \int_{\frac{2 \sqrt{2}}{\sin \phi}}^{4}\left(16-\rho^{2}\right) \rho^{2} \sin \phi d \rho d \phi d \theta$
25. Write the double integral $\int_{1}^{2} \int_{0}^{\ln x}(x-1) \sqrt{1+e^{2 y}} d y d x$ in the order $d x d y$. Do not find the value. ANS: $\int_{0}^{\ln 2} \int_{e^{y}}^{2}(x-1) \sqrt{1+e^{2 y}} d x d y$
26. $\int_{0}^{a} \int_{0}^{\sqrt{a x-x^{2}}} \frac{a d y d x}{\sqrt{a^{2}-x^{2}-y^{2}}}$. ANS: $a^{2}\left(\frac{\pi}{2}-1\right)$
27. Use spherical coordinates to evaluate $\iiint_{T} \frac{d x d y d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$, where T is the region bounded by the spheres $x^{2}+y^{2}+z^{2}=4, x^{2}+y^{2}+z^{2}=9$ and the half-cone $x^{2}+y^{2}-z^{2}=0, z \geq 0$. ANS: $2 \pi\left(1-\frac{1}{\sqrt{2}}\right) \ln \left(\frac{3}{2}\right)$

4 Vector Fields

1. True/False: $\nabla \cdot(\nabla \times \mathbf{F})=0$
2. True/False: If \mathbf{F}, \mathbf{G} are vector fields and $\nabla \times \mathbf{F}=\nabla \times \mathbf{G}$, then $\mathbf{F}=\mathbf{G}$.
3. True/False: If \mathbf{F} is conservative then $\nabla \cdot \mathbf{F}=0$
4. True/False: curl $(\operatorname{div} \mathbf{F}))$ is not a meaningful expression
5. Let \mathcal{D} be the triangle in the $x y$ plane with vertices at $(0,0),(1,0)$ and $(0,1)$. a) Evaluate $\int 2 y^{2} d x+2 x d y$ as a line integral. b) Evaluate the line integral in a) by using Green's Theorem and then evaluating a double integral. ANS $=1 / 3$
6. Show that the vector field $\mathbf{F}=\left(3 x^{2} y^{2} z+1,2 x^{3} y z+2, x^{3} y^{2}+3\right)$ has zero curl. Then find a potential V with $\nabla V=\mathbf{F}$. ANS: $x^{3} y^{2} z+x+2 y+3 z$
7. Evaluate $\int_{C}\left(y+e^{x^{2}}\right) d x-x d y$, where C is the square with vertices $(0,0),(1,0)$, $(1,1)$ and $(0,1)$, oriented counterclockwise. ANS - 2
8. Calculate the flux $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} d \sigma$ where \mathcal{S} is the part of the plane $2 x+5 y+z=10$ in the first octant with the upward-pointing normal, and $\mathbf{F}=<z, 2 y, 6 x>$. ANS: 5950/3
9. Calculate $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} d \sigma$, where \mathcal{S} is the part of the paraboloid $z=9-x^{2}-$ y^{2} on or above the plane $z=1$, with the upward-pointing normal, and $\mathbf{F}=$ $\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}, z\right)$
10. Find the work of the vector field $\mathbf{F}(x, y, z)=y \mathbf{i}$ along the curve which is obtained as the intersection of the surfaces $z=x^{2}+y^{2}-2$ and $2 x+4 y=z+2$. Hint: you may find it useful to complete the squares and use the identity $\sin ^{2} t=\frac{1}{2}(1-\cos (2 t))$. ANS: $-\pi$
11. Consider the vector field $\mathbf{F}(x, y, z)=\left(y+y^{2} z\right) \mathbf{i}+(x-z+2 x y z) \mathbf{j}+\left(-y+x y^{2}\right) \mathbf{k}$. Compute the line integral (work) $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}, C_{1}$ is the curve $\mathbf{r}(t)$ with equation $\mathbf{r}(t)=\left(\cos t, t-1, e^{1-\sin t}\right)$ and $0 \leq t \leq \pi / 2$. ANS: $-\frac{\pi}{2}-2 e+2$
12. Evaluate the work (line integral) $\int_{C} y d x+x d y+2 z d z$. Here C is the curve with equation $\mathbf{r}(t)=t(t-1) e^{\sqrt{t}} \mathbf{i}+\sin \left(\frac{\pi}{2} t^{2}\right) \mathbf{j}+\frac{t}{t^{2}+1} \mathbf{k}$ for $0 \leq t \leq 1$. ANS: $\frac{1}{4}$
13. Find the value of the constant λ for which the vector field $\mathbf{F}(x, y, z)=(2 x y+$ $\left.\lambda z^{2}, 2 y z+\lambda x^{2}, 2 x z+\lambda y^{2}\right)$ is conservative. ANS: $\lambda=1$

5 Divergence and Stokes Theorem

1. Recall that if \mathbf{a}, \mathbf{b} are two vectors then $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$, since $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} so their dot product must be zero. Likewise, we have that $\mathbf{a} \times \mathbf{a}=\mathbf{0}$. There are analogues of these identities which involve the entity ∇. More precisely, a) show that if $\mathbf{F}(x, y, z)$ is a vector field, then $\nabla \cdot(\nabla \times \mathbf{F})=0$ and b$)$ if V is an arbitrary scalar function, then $\nabla \times(\nabla V)=\mathbf{0}$.
2. Use Stokes' theorem to find the work $\oint \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{k}$ and C is the unit circle $x^{2}+y^{2}=R^{2}$. ANS: 0
3. Consider the closed curve C obtained from the intersection of the paraboloid $z=$ $4-x^{2}-y^{2}$ with the three octants $x=0, y=0, z=0$, as shown in the figure (so the curve consists of three pieces). Use Stokes' theorem to compute the line integral (work) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=(y z) \mathbf{i}-x z \mathbf{j}+\mathbf{k}$. When applying Stokes' theorem, choose the normal vector \mathbf{n} on the surface S which has positive third

coordinate.
ANS: 0
4. Using Stokes' theorem, find $I=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, where $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+(y+z) \mathbf{k}$ and S is the portion of the surface $2 x+y+z=2$ above the first octant and \mathbf{n} is the unitary normal vector to the surface, with non-negative z component. ANS: 2
5. Use Stokes' theorem to evaluate $\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z$ where C is the intersection of the cylinder $x^{2}+y^{2}=1$, and the plane $x+y+z=1$. Assume C is oriented counterclockwise with respect to the $x y$ plane. ANS: $\frac{6 \pi}{4}$
6. Verify Stokes' theorem for the upper hemisphere of the sphere $x^{2}+y^{2}+z^{2}=9$, the its boundary $x^{2}+y^{2}=9, z=0$ and the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$. ANS: -18π
7. For $\mathbf{F}=2 x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ and S the unit sphere $x^{2}+y^{2}+z^{2}=1$, compute $\int \mathbf{F} \cdot \mathbf{n} d \sigma$ using the divergence theorem. ANS: $8 \pi / 3$
8. Verify the divergence theorem for $\mathbf{F}=2 x^{2} y \mathbf{i}-y^{2} \mathbf{j}+4 x z^{2} \mathbf{k}$ and the region bounded by $y^{2}+z^{2}=9, x=0$ and $x=2$. ANS: 0
9. Find the divergence of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ and $\mathbf{G}=\frac{x \mathbf{i}+y \mathbf{j}}{x^{2}+y^{2}}$. ANS: 2 and 0 respectively.
