Lecture 1 [12.1-12.2]
the particle gives you the original parabola

Arrow $=$ (position) vector S gives you a directions in space
\rightarrow gives you a size ordistance between the points.

add/subtract vectors (amour) multiply vectors \sum^{3} dot product
$\vec{r}=$ position

$\vec{r}(t)=$ position of the particle at time t.

$$
\vec{r}(t)=\left(t, t^{2}\right) \quad \begin{aligned}
& x(t)=t \\
& y(t)=t^{2}
\end{aligned}
$$

$\frac{d \vec{r}}{d t}=(1,2 t)=$ velocity of the particle $\vec{v}^{p}(t)$ $\frac{d^{2} \vec{r}}{d t^{2}}=(0,2)=$ acceleration $\vec{a}(t)$

$$
\vec{r}(t)=(x(t), y(t), z(t))
$$

vcutor field = one arrow drawn at each point of space (divergence $\begin{gathered}\text { positive) }\end{gathered}$
Raritun source of

(vorticity or curl not vanishing)

$$
12.1-12.2
$$

vectors:
vector ρ direction
symbol
is
$|\vec{v}|$$\quad\left\{\begin{array}{l}\longrightarrow \text { size of a vector } \\ =\text { magnitude vector } \\ =\text { norm vector }\end{array}\right.$ or $\|\vec{v}\|$
$|\vec{v}|=$ size of a vector $\lfloor\quad\rfloor$ a non - neg ative number behaves like an a bsolute value
$\frac{1}{2} \vec{r}$

us twice as big as \vec{V}, but points in the some direction
analogy

$$
\frac{|2 x|=2|x|}{\left|2 v^{v}\right|=2|\vec{v}|} \frac{\mid \text { analogous }}{|-2 x|=2|x|}
$$

Remark:
this is how you multiply a vector by a number

ordinary terminology	fancy terminology
arrows	vectors
size	magnitude or norm
numbers integers, π, e, $\sqrt{2})$	scalars

if a vector is moved. while preserving its size and direction then it is considered
the scene vector $\vec{v} \rightarrow$

Lecture 2 (12.2-12.3)
Vectors and some operations
$\longrightarrow \mathrm{add} /$ subtract vectors
Drawing vectors (recto multiplication)

the vectors start at the origin-
you can use them to specify a point in space How to add vectors

The way to ad d vectors: make a parallelogram whose sides
is represented by the two vectors, one of the diagonals gives you the sum of the vectors give you the

$$
\begin{aligned}
& \vec{u}=(1,5) \\
& \vec{v}=(3,8) \\
& \vec{u}+\vec{v}=(4,13)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{w}=(-1,7) \\
& \vec{u}+\vec{w}^{2}=(0,12) \\
& \vec{u}=(1,-1,5) \\
& \vec{v}=(0,1,7) \\
& \vec{u}+\vec{v}=(1,0,12) \\
& \vec{u}=(1,2,0,5) \\
& \vec{v}=(1,1,-5,0)
\end{aligned}
$$

$$
\vec{u}+\vec{v}=(2,3,-5,5)
$$

Flatland
not allowed:

$$
\begin{aligned}
& \vec{u}=(1,3) \\
& \vec{v}=(2,1,0) \\
& \vec{u}=(1,0
\end{aligned}
$$

$\vec{w}=(1,1,1,1)$
$\vec{u}+\vec{v}$ not defined!
so only add vectors with the same number of entries
$\vec{v}+\vec{u}$ not defriod
How to subtract vectors

$$
3-5=3+(-5)
$$

$$
\vec{v}-\vec{u}=\underset{\Delta=\vec{u}}{\vec{v}}+(-\vec{u})
$$

$\vec{v}-\vec{U}$: the other diagonal in the paralldagrum

$$
\vec{u}=(1,5)
$$

$$
\begin{aligned}
& \vec{v}=(2,7) \\
& \vec{v}-\vec{u}=(1,2) \\
& \vec{u}-\vec{v}
\end{aligned}=(-1,-2) .
$$

P is represented by a vector $\left(u_{1}, u_{2}\right)=\vec{u}$
a is representol by a vector $\left(v_{1}, v_{2}\right)=v^{0}$

$$
\vec{v}-\vec{u}^{\prime}=\left(u_{1}-u_{1}, v_{2}-u_{2}\right)
$$

is the vector that coos, from naint p
to paint or

$$
\begin{aligned}
P & =\left(x_{1}, y_{1}\right) \\
D & =\left(x_{2}, y_{2}\right) \\
P \vec{O} & =Q-P=\text { vector from } \\
& P \text { to } a \\
& =\left(x_{2}-x_{1}, y_{2}-y_{1}\right)
\end{aligned}
$$

distance from Prat

$$
=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Dot product
Calso known as scalar product or inner product'

$\vec{u} \cdot \vec{v}=$ this will be a number, not a new vector
$\theta=$ angle between the vector \downarrow

the one which is between 0° and 180° (or 0 and Treed

$$
\vec{u} \cdot v^{D}=\left|\vec{u}^{0}\right||\vec{v}| \cos \theta
$$

key Formula/Definitiog
= multiply the lengths of the vectors primes cosine

$$
\begin{gathered}
\vec{v} / \vec{v}=\frac{\pi}{3} r a d=60^{\circ} \\
\vec{v} \quad|\vec{v}|=6 \\
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}|=\cos \theta \\
=5 \cdot 6 \cdot \cos \left(\frac{\pi}{3}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =30 \cdot \frac{1}{2} \\
& =15
\end{aligned}
$$

$$
\left.\begin{array}{l}
\overrightarrow{0}=(0,0) \\
\overrightarrow{0}=(0,0,0) \\
\mid \vec{u} \cdot \overrightarrow{0}=0) \\
\left(\vec{u}+\overrightarrow{0}=\overrightarrow{u^{0}}\right.
\end{array}\right)
$$

Properties of dot product
(1) $\vec{u} \cdot \stackrel{\rightharpoonup}{v}=\vec{v} \cdot \vec{u}$
(2)

$$
\begin{array}{r}
\vec{u} \cdot \vec{v} \\
\longrightarrow \text { positive }=\begin{array}{c}
\text { awto a congle }
\end{array} \\
\text { zero }=\begin{array}{c}
\text { perpendi wlun } \\
\text { Corthogonal } \\
\text { veetors) }
\end{array}
\end{array}
$$

$\longrightarrow_{\text {regative }=\text { obtise }}$ angle
(3)

mutually perpendicular

NUNVN rext tine

$$
\begin{aligned}
& \vec{u}=(1,0,3) \\
& \vec{v}=(-1,1,2) \\
& \vec{u}=\vec{r}+3 \vec{k} \\
& \vec{v}=-\vec{u}+\vec{\jmath}+2 \vec{k}
\end{aligned}
$$

$\vec{u} \cdot \vec{v}$

$$
=(\vec{\imath}+3 \vec{k}) \cdot(-\vec{r}+\vec{j}+2 \vec{k}
$$

$$
\begin{aligned}
& =1 \cdot\left(-7^{0}\right)+(3 \vec{k} \cdot(2 \vec{k}) \\
& =-1+6 \\
& =5 \\
& =1 \cdot(-1)+(0 \cdot 1)+(3 \cdot 2)
\end{aligned}
$$

Lecture 3 (12.3-12.4)
Last time

$$
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta
$$

Properties
$\vec{u} \cdot \vec{v}=0$, iuectors are perpendicular (orthogonal) to one another

$$
\begin{aligned}
& \vec{\imath} \cdot \vec{T}=\left|T^{0}\right|\left|\imath^{0}\right| \cos \theta=1 \cdot 1 \cdot \cos 0=1 \\
& \vec{\rightarrow} \quad \mid \overrightarrow{1} \cdot \vec{T} \cdot T^{0}=1 \\
& \vec{\jmath} \rightarrow \vec{\jmath}=1
\end{aligned}
$$

How to find dot product

$$
\begin{aligned}
& \vec{u}=(2,3,5)=2 \vec{\imath}+3 j 0+5 \vec{k} \\
& \vec{v}=(2,4,6)=2 \vec{\imath}+4 \vec{\jmath}+6 \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=\left(2 T^{\vec{r}}+3 \vec{j}+5 k^{0}\right) \cdot(2 \vec{i}+4 \vec{j}+6 \vec{k}) \\
& =(2 \cdot 2) \tau^{2} \cdot \pi^{3}+(2 \cdot 4) \pi \cdot \pi^{3}+(2-6) \pi_{0}^{J} \cdot k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +(5 \cdot 2) \vec{k} \cdot \overrightarrow{0}+(5.4) \vec{k} \cdot \vec{j}+(5.6) \vec{k} \cdot \vec{k} \\
& =2.2+3.4+5.6 \\
& =4+12+30 \\
& =46 \\
& \vec{u}=(2,3,5) \\
& \vec{v}^{\prime}=(2,4,6) \\
& \vec{u} \cdot \vec{v}=2 \cdot 2+3 \cdot 4+5 \cdot 6 \\
& =-46
\end{aligned}
$$

General Formula

$$
\begin{aligned}
& \vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \\
& \vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \\
& \vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta \\
& =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
\end{aligned}
$$

tends to be more convenient.

Property of tho dot
product

$$
\xrightarrow{\text { product } \rightarrow\left(v_{1}, v_{2}, v_{3}\right)}
$$

$$
\begin{aligned}
\vec{v} \cdot \vec{v} & =|\vec{v}||\vec{v}| \cos \theta \\
& =|\vec{v}|^{2} \cos 0 \\
& =|\vec{v}|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{v} \cdot \vec{v} & =\left(v_{1}, v_{2,} v_{3}\right) \cdot\left(v_{3}, v_{2}, v_{3}\right) \\
= & v_{1}^{2}+v_{2}^{2}+v_{3}^{2} \\
& |\vec{v}|^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}
\end{aligned}
$$

$$
6|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

3D Pythagorgs
exumples

$$
\begin{aligned}
\vec{v} & =(1,-2,5) \\
|\vec{v}| & =\sqrt{1^{2}+(-2)^{2}+5^{2}} \\
& =\sqrt{1+4+25} \\
& =\sqrt{30}
\end{aligned}
$$

$$
\overrightarrow{P a}=Q-P=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
$$

distance P to Q :

$$
=|P \vec{Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{3}+\left(z_{2}-z\right)^{2}}
$$

Angle between trow

- vectors

$\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta$
$\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}=\cos \theta$
$\left\{\begin{aligned} & \delta \\ & b \arccos \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right)\}\end{aligned}\right\}$
example:
angle between

$$
\begin{aligned}
& \vec{v}=(-1,2,5) \\
& \vec{u}=(1,1,1) \\
& \theta=\arccos \left(\frac{(1,1,1) \cdot(-1,2,5)}{|(1,1,1)||(-1,2,5)|}\right) \\
& =\arccos \left(\frac{-1+2+5}{\sqrt{1^{2}+1^{2}+1^{2}} \sqrt{(-1)^{2}+2^{2}+5^{2}}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\arccos \left(\frac{6}{\sqrt{3} \sqrt{30}}\right) \\
& =\arccos \left(\frac{6}{\sqrt{90}}\right)
\end{aligned}
$$

(12.4) Cross Product
$\vec{u}^{D} \times \bar{v}^{\circ} 4$ (Soc vectors with 3 entries

$$
\vec{u} \times \vec{v}=\text { cross product }
$$

= new vector

- vector perpenclicular to both \vec{u} and \vec{v}
Right hand rule:
decides the direction
that the cross product will have

$$
\vec{v} \times \vec{u}
$$

$$
\varepsilon v^{\vec{v}} \times \vec{u}=-\vec{u} \times v^{0} j
$$

the or len matters!

$$
\{|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta
$$

Properties of cross polit

$$
\left\{\vec{u}^{-} \times \vec{u}^{-}=\widetilde{0}^{-0}=(0,0,0)\right\}
$$

if \vec{u}, \vec{v} are parallel
Cor centi parcelleld
(anale $\theta=0$ or 1800)
then

$$
\vec{u} \times \vec{v}=\vec{v} \times \vec{u}=\overrightarrow{0}
$$

Parallelogram:

$$
\begin{array}{ll}
\text { base }=|\vec{u}| & \vec{v} / \theta \\
\text { height }=|\vec{v}| \sin \theta & h \\
\left.\sin \theta=\frac{h}{|\vec{v}|} \right\rvert\,
\end{array}
$$

area
= base height

$$
=|\vec{u}||\vec{u}| \sin \theta
$$

$$
=\left|\vec{u}^{D} \times \bar{v}^{D}\right|
$$

exumple: $\vec{v}=(2,5)$

area of paralleloyrum:

$$
\begin{aligned}
& \vec{u} \times \vec{v} \\
= & (4 \vec{\imath}+3 \vec{\jmath}+0 \vec{k}) \\
& \times(2 \vec{\jmath}+5 \vec{\jmath}+\overrightarrow{0} \vec{k}) \\
= & (4 \vec{\jmath}+3 \vec{\jmath}) \times(2 \vec{\jmath}+5 \vec{\jmath}) \\
= & (4.2) \overrightarrow{0} \times \vec{\jmath}+(4 \cdot 5) \vec{\jmath} \times \vec{\jmath} \overrightarrow{0} \\
+ & (3-2) \vec{\jmath} \times \overrightarrow{0}+(3.5) \vec{\jmath} \times \vec{\jmath}
\end{aligned}
$$

$$
\begin{aligned}
& =20 \vec{k}-6 \vec{k} \\
& =14 \vec{k} \\
& =(4 \cdot 5-3 \cdot 2) \overrightarrow{k^{0}} \\
& \vec{u}=(4,3) \\
& \vec{v}=(2,5) \\
& A=\left(\begin{array}{ll}
4 & 3 \\
2 & 5
\end{array}\right)
\end{aligned}
$$

$\operatorname{det} A=4 \cdot 5-2 \cdot 3$
Formula for a 2×2 matrix

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
& d
\end{array}\right) \\
& \operatorname{det} A=a d-b c \\
& \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)=1.5-2.4 \\
& =5-8
\end{aligned}
$$

$$
=-3
$$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
2 & -1 \\
3 & 5
\end{array}\right) \\
&= 2 \cdot 5-(-1) \cdot 3 \\
&= 10+3 \\
&=13
\end{aligned}
$$

Lecture 4 (12.4-12.5)
Deferminiunts of matrices

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad 2 \times 2 \text { matrix } \\
& \operatorname{det} A=|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& A=\left(\begin{array}{ll}
2 & 1 \\
5 & 7
\end{array}\right) \\
& \operatorname{det} A=2.7-1.5=14-5=9 \\
& A=\left(\begin{array}{ll}
2 & -4 \\
5 & 6
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{det} A=2 \cdot 6-(-4) \cdot 5=12+20=32
$$

$$
\text { area }=|\vec{u} \times \vec{V}|=\text { absolute value of } \operatorname{det} A
$$

$$
=|a d-b c|
$$

3×3 matrix
volume
$V=|\operatorname{det} A|$

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

absolute value of determinant $\operatorname{det} A$ is a number

$\int f(x) d x$ calc 1
$\iint f(x, y)^{\prime} d y d x$ in this course
$\iint f(r, \theta) r d r d \theta$ a determinant thoron

Method for finding determinant

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a^{+} & \bar{b} & c^{+} \\
d & e & f \\
g & h & i
\end{array}\right) \\
& \begin{array}{l}
= \\
+a \operatorname{det}\left(\begin{array}{ll}
e & f \\
h & i
\end{array}\right)-b \operatorname{det}\binom{d f}{g i}+c \operatorname{det}\binom{d e}{g}
\end{array} \\
& A=\left(\begin{array}{ccc}
+ & = & 7 \\
1 & 2 & 3 \\
-1 & 4 & 5 \\
7 & 2 & 2
\end{array}\right) \\
& \operatorname{det} A \\
& =+1 \operatorname{det}\left(\begin{array}{ll}
4 & 5 \\
2 & 2
\end{array}\right)-2 \operatorname{det}(-15)+3 \operatorname{det}\left(\begin{array}{cc}
-1 & 4 \\
7 & 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
=(4 \cdot 2-5 \cdot 2)-2(-2-35)+3(-2-28) \\
=-2-2(-37)+3(-30) \\
=-2+74-90 \\
=72-90 \\
=-18
\end{gathered}
$$

$|\operatorname{det} A|$

$$
=|-18|=18
$$

= volume of the parallelepiped obtained by taking the rows as vectors making of the box

$$
\vec{u} \times \vec{v}=\operatorname{cet}\left(\begin{array}{ccc}
\vec{x} & \vec{\jmath} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

exumple!

$$
\begin{aligned}
& \vec{u}=(1,3,-5) \\
& \vec{v}^{0}=(1,7,2) \\
& \vec{u} \times \vec{v}=\operatorname{det}\left(\begin{array}{ccc}
1 & \vec{j} & \vec{k} \\
1 & 3 & -5 \\
1 & 7 & 2
\end{array}\right) \\
& =+\vec{T}^{0} \operatorname{det}\left(\begin{array}{l}
3 \\
-5 \\
72
\end{array}\right)-\vec{j} \operatorname{det}(1-5)+\vec{k}^{0} \operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{r}
=\vec{T}(6+35)-\vec{J}(2+5)+\vec{k}(7-3) \\
=41 \vec{\imath}-7 \vec{\jmath}+4 \vec{k} \\
=\ll 41,-7,4\rangle \\
(\vec{u} \times \vec{v}) \times \vec{u} \\
\times \vec{v} \\
\times(\vec{u} \times \vec{v}) \\
(\vec{u} \times \vec{v}) \times(\vec{u} \times \vec{v})=\overrightarrow{0}
\end{array}
$$

vector identities (wikipedia)
area of a triangle

area of triangle with vertices P, Q, R
$=\frac{1}{2}$ area paralldogram with sides $\overrightarrow{P Q}, \overrightarrow{Q R}$

$$
=\frac{1}{2}|P \vec{Q} \times \overrightarrow{Q R}|
$$

Back to 12,3
vector projections

a projection of \bar{u} onto \vec{v}
$=\operatorname{proj}_{\vec{v}}^{\vec{u}}$
Size of prof $\underset{\vec{v}}{\vec{u}}$ is called tho.

Scalar component of \vec{u} is the direction

$$
\begin{aligned}
&\left|\operatorname{proj}_{\vec{v}} \vec{v}\right|=|\vec{u}| \cos \theta \\
&=|\vec{u}| \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} \\
&\left|\operatorname{proj}_{\vec{v}} \vec{u}\right|=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|}
\end{aligned}
$$

length of shadow

$$
\operatorname{prg}_{\vec{v}} \vec{u}=\left(\frac{\overrightarrow{\vec{u}} \cdot \vec{v}}{|\vec{v}|}\right) \frac{\vec{v}}{|\vec{v}|}
$$

$$
\operatorname{poj}_{\vec{v}}^{\vec{u}}=\frac{(\vec{u} \cdot \vec{v})}{|\vec{v}|^{2}} \vec{v}
$$

example:

$$
\begin{aligned}
& \vec{u}=(2,-1,3) \\
& \vec{v}=(1,5,7) \\
& \text { proj } \overrightarrow{\vec{v}} \\
& =\frac{\vec{u} \cdot \vec{v}}{\mid \cdot \vec{v} 12} \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(2,-1,3) \cdot(1,5,7)}{1^{2}+5^{2}+7^{2}} \vec{v} \\
& =\frac{2-5+21}{26+49} \vec{v} \\
& =\frac{18}{75} \vec{v} \\
& =\frac{18}{75}(1,5,7)
\end{aligned}
$$

$$
\begin{aligned}
\left|\operatorname{proj}_{\vec{v}}^{\vec{u}}\right| & =\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} \\
& =\frac{18}{\sqrt{75}}
\end{aligned}
$$

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\operatorname{proj}_{3 \vec{u}} \overrightarrow{u^{0}} \overrightarrow{3 \vec{v}}
$$

$\operatorname{proj}_{\vec{v}} 3 \vec{u}=3 \operatorname{proj}_{\vec{v}}^{\vec{u}}$ Cinnsus
next time (12.5)
Org topic planes and lines

$$
\text { plane }\left\{\begin{array}{lc}
\text { normal } & \text { perpendiwlar } \\
\text { vector } & \text { to the } \\
+ & \text { Plane } \\
\text { point }
\end{array}\right.
$$

Lecture 5 (12.5-12.6)
12.5: Lines and planes
$-20)=$ position of the car at

=gives the direction of the line
live: trajectory of a particle which
mover with constant velocity

$$
\begin{aligned}
\text { speed }=\frac{\text { distance }}{\text { time }} \rightarrow \text { distance }=\text { time } \cdot \text { speed } \\
\text { disilucoment }=\text { time velocity }
\end{aligned}
$$

$r^{-0}(t)-r^{\prime}(0)=$ net displacement of the car

$$
=t \vec{v}
$$

vector equation of a line is

Find the equation of a line if

$$
\nabla^{0}(0)=(1,-1,5) \left\lvert\, \begin{aligned}
& \vec{r}(t)=\vec{r}^{2}(0)+t r^{0} \\
& \nabla^{D}=(2,7,5) \\
& d t r r^{0} \\
& \frac{d^{2} \vec{r}}{d t^{2}}=\overrightarrow{0}=\vec{a}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \vec{r}(t)=(1,-1,5)+t(2,7,5) \\
& \vec{r}(t)=(1+2 t,-1+7 t, 5+5 t)
\end{aligned}
$$

Parametric
$(x, y, z)=(1+2 t,-1+7 t, 5+5 t)$ equation of line

$$
\left\{\begin{array}{l}
x=1+2 t \\
y=-1+7 t \\
z=5+5 t
\end{array}\right.
$$

Ls you would e call this the parametric equation of a line (this is the version most used in this class)

Interaction of lines
Find if the limes with equations

$$
\left\{\begin{array}{l}
x=2-t \\
y=3 t \\
z=1+t
\end{array}, \quad\left\{\begin{array}{l}
x=5+2 t \\
y=1-t \\
z=8+3 t
\end{array}\right.\right.
$$

we don't care if the cars collide, only if the paths intersect
set the equations equal to each - thar but change the name of "t" for ane of the lines

$$
\begin{aligned}
& \left\{\begin{array}{l}
2-t=5+2 s \\
3 t=1-5 \rightarrow(s=1-3 t) \\
1+t=8+3 s
\end{array}\right. \\
& \left\{\begin{array}{l}
2-t=5+2(1-3 t) \\
1+t=8+3(1-3 t)
\end{array}\right. \\
& \left\{\begin{array}{l}
2-t=5+2-6 t \\
1+t=8+3-9 t \\
\left\{\begin{array}{l}
2 t=5 \rightarrow t=1 \\
10 t=10 \rightarrow t=1
\end{array}>\begin{array}{l}
s=1-3 \\
5 t
\end{array}\right. \\
\left\{\begin{array}{l}
2=-2
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

if you had found different values of "t" when solving bo the equations, then there would be me intersect tron.

$$
\left.\begin{array}{c}
t=1, \quad S=-2 \\
2 \\
\left\{\begin{array} { l }
{ x = 2 - t } \\
{ y = 3 t } \\
{ z = 1 + t } \\
{ \searrow }
\end{array} \quad \left\{\begin{array}{l}
x=5+2 s \\
y=1-s \\
z=8+3 s
\end{array}\right.\right. \\
(1,3,2
\end{array}\right)
$$

where the lines intersect

Planes (infinite sheet of
paper)

$\vec{n}=$ normal vector $=$ vector perpendicular to the plane f \vec{n}_{1}
 parallel if their normal rectors ane parallel
 $\vec{n}_{1}^{0} \times \vec{n}_{2}^{0}=\overrightarrow{0}$
two planes ave perpendicular if their noumena?
vectors cure perpendicular

$$
n_{3} \cdot \overrightarrow{n_{4}}=0
$$

equation of a plane

$\vec{n}=(a, b, c)$ (entries of normal vector)
$\left(x_{0,}, y_{0,}, z_{0}\right)$ (known point on
the pare)
to find the equation of a plane you need the normal vector and a point on the plane

$$
\begin{gathered}
\vec{n} \circ \overrightarrow{P D}=0 \\
(a, b, c) \cdot\left(x-x_{0}, y-y_{0, z-z}\right)= \\
a\left(x-x_{0}\right)+b\left(u-u_{n}\right)+
\end{gathered}
$$

$$
\begin{gathered}
c\left(z-z_{0}\right)^{5}=0 \\
a x-a x_{0}+b y-b y_{0} \\
+c z-c z_{0}=0
\end{gathered}
$$

eqoation plane

$$
\left\{\begin{aligned}
a x+b y+c z & = \\
a x_{0} & +b y_{0}+c z_{0}
\end{aligned}\right.
$$

example

$$
\vec{n}=(-1,2,5)
$$

point $\left(x_{0}, y_{0}, z_{0}\right)=(x, 3,7)$

$$
\begin{aligned}
& -x+2 y+5 z \\
& =-2+6+35 \\
& -x+2 y+5 z=39
\end{aligned}
$$

coefficients multiplying x, y, z are the entries of the normal vector

50 you can find \vec{n}
if you are given 3 anoints on the plane

$$
\sqrt{ } \sqrt[v]{ }
$$

Lecture 6 ($12.6,13.1,93.2$)
If two planes are not parallel, their intersection

line of intersection:
the points (x, y, z) where changing this number creates both equations are satisfied. paroled planes

3 unknowns x, y, z 2 equations
write two of. the variables in terms of the remaining

$$
\begin{aligned}
& 13 x-3 y=26 \\
& 13 x=26+3 y \\
& x=2+\frac{3}{13} y \\
& z=5-2\left(2+\frac{3}{13} y\right)+y \\
& z=1+\frac{7 y}{13}
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ x = 2 + \frac { 3 } { 1 3 } y } \\
{ y = t } \\
{ z = 1 + \frac { 7 y } { 1 3 } }
\end{array} \rightarrow \left\{\begin{array}{l}
x=2+\frac{3}{13} t \\
y=t \\
z=1+\frac{7 t}{13} \\
\begin{array}{l}
\text { parametric } \\
\text { equation of a line }
\end{array}
\end{array}\right.\right.
$$

distance point to a place

distance from points to plane
phone
$P=$ point on the plane

$$
\left.\begin{aligned}
& =\mid \text { proj } \\
& \overrightarrow{P S} \\
& =\mid \overrightarrow{P S} \\
& =\left|\frac{\vec{n}}{|\vec{n}|}\right|
\end{aligned} \right\rvert\,
$$

12.6 (visual recognition of certain equations)

Sphere: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}$
 radius R

$$
x=3
$$

$z=x^{2}+y^{2}$ (circle radios \sqrt{z}) paraboloid
x
cone $z=\sqrt{x^{2}+y^{2}}$

Chapter 13 ($13.1,13.2,13.3$) curves $\vec{r}=$ position rector from origin to some point on the curve

$$
\vec{r}=(x, y)=\int\left(x, x^{2}\right)=\vec{r}(x) \rightarrow \vec{r}(t)=\left(t, t^{2}\right)
$$

$$
\{(\sqrt{y}, y)=\vec{r}(y) \rightarrow \vec{r}(t)=(\sqrt{t}, t)
$$

In general, you write this as
$\vec{r}(t)$, so that you can think of " t " as behaving as the time variable

Important example

2) fire but not ideal since you reel a for spucene

$$
\begin{array}{r}
=(2 \cos \theta, 2 \sin \theta) \\
0 \leqslant \theta \leqslant 2 \pi \\
\theta=\frac{x}{2} \quad \sin \theta=\frac{y}{2}
\end{array}
$$

Pifficult exumple $x^{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=4$

from interaecting tus o surfaces

$$
\begin{aligned}
& x^{2}+\frac{b^{2}}{2}+\frac{y^{2}}{2}=4 \\
& x^{2}+y^{2}=4
\end{aligned}
$$

previous $\xrightarrow[\text { exampin }]{ } x=2 \cos t, y=z \sin t$

$$
\begin{aligned}
& \vec{r}^{\Delta}=(x, y, z)=(2 \cos t, 2 \sin t, 2 \sin t) \\
& |\vec{r}(t)=(2 \cos t, 2 \sin t, 2 \sin t)|
\end{aligned}
$$

pesition vector as a function of t.
$\vec{v}=\frac{d \vec{r}}{d t}=(-2 \sin t, 2 \cos t, 2 \cos t)$ velocity vectar

$$
1<y
$$

$$
\vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}=(-2 \cos t,-2 \sin t,-2 \sin t)
$$

accueleration vecter

$$
\begin{aligned}
& \vec{r}(t)=(1,-1,5)+t(2,7,5) \\
& \vec{r}(t)=(1+2 t,-1+7 t, 5+5 t)
\end{aligned}
$$

Parametric
$(x, y, z)=(1+2 t,-1+7 t, 5+5 t)$ equation of line

$$
\left\{\begin{array}{l}
x=1+2 t \\
y=-1+7 t \\
z=5+5 t
\end{array}\right.
$$

Ls you would e call this the parametric equation of a line (this is the version most used in this class)

Interaction of lines
Find if the limes with equations

$$
\left\{\begin{array}{l}
x=2-t \\
y=3 t \\
z=1+t
\end{array}, \quad\left\{\begin{array}{l}
x=5+2 t \\
y=1-t \\
z=8+3 t
\end{array}\right.\right.
$$

we don't care if the cars collide, only if the paths intersect
set the equations equal to each - thar but change the name of "t" for ane of the lines

$$
\begin{aligned}
& \left\{\begin{array}{l}
2-t=5+2 s \\
3 t=1-5 \rightarrow(s=1-3 t) \\
1+t=8+3 s
\end{array}\right. \\
& \left\{\begin{array}{l}
2-t=5+2(1-3 t) \\
1+t=8+3(1-3 t)
\end{array}\right. \\
& \left\{\begin{array}{l}
2-t=5+2-6 t \\
1+t=8+3-9 t \\
\left\{\begin{array}{l}
2 t=5 \rightarrow t=1 \\
10 t=10 \rightarrow t=1
\end{array}>\begin{array}{l}
s=1-3 \\
5 t
\end{array}\right. \\
\left\{\begin{array}{l}
2=-2
\end{array}\right.
\end{array}\right.
\end{aligned}
$$

if you had found different values of "t" when solving bo the equations, then there would be me intersect tron.

$$
\left.\begin{array}{c}
t=1, \quad S=-2 \\
2 \\
\left\{\begin{array} { l }
{ x = 2 - t } \\
{ y = 3 t } \\
{ z = 1 + t } \\
{ \searrow }
\end{array} \quad \left\{\begin{array}{l}
x=5+2 s \\
y=1-s \\
z=8+3 s
\end{array}\right.\right. \\
(1,3,2
\end{array}\right)
$$

where the lines intersect

Planes (infinite sheet of
paper)

$\vec{n}=$ normal vector $=$ vector perpendicular to the plane f \vec{n}_{1}
 parallel if their normal rectors ane parallel
 $\vec{n}_{1}^{0} \times \vec{n}_{2}^{0}=\overrightarrow{0}$
two planes ave perpendicular if their noumena?
vectors cure perpendicular

$$
n_{3} \cdot \overrightarrow{n_{4}}=0
$$

equation of a plane

$\vec{n}=(a, b, c)$ (entries of normal vector)
$\left(x_{0,}, y_{0,}, z_{0}\right)$ (known point on
the pare)
to find the equation of a plane you need the normal vector and a point on the plane

$$
\begin{gathered}
\vec{n} \circ \overrightarrow{P D}=0 \\
(a, b, c) \cdot\left(x-x_{0}, y-y_{0, z-z}\right)= \\
a\left(x-x_{0}\right)+b\left(u-u_{n}\right)+
\end{gathered}
$$

$$
\begin{gathered}
c\left(z-z_{0}\right)^{5}=0 \\
a x-a x_{0}+b y-b y_{0} \\
+c z-c z_{0}=0
\end{gathered}
$$

eqoation plane

$$
\left\{\begin{aligned}
a x+b y+c z & = \\
a x_{0} & +b y_{0}+c z_{0}
\end{aligned}\right.
$$

example

$$
\vec{n}=(-1,2,5)
$$

point $\left(x_{0}, y_{0}, z_{0}\right)=(x, 3,7)$

$$
\begin{aligned}
& -x+2 y+5 z \\
& =-2+6+35 \\
& -x+2 y+5 z=39
\end{aligned}
$$

coefficients multiplying x, y, z are the entries of the normal vector

50 you can find \vec{n}
if you are given 3 anoints on the plane

$$
\sqrt{ } \sqrt[v]{ }
$$

Lecture 7
(remaining stuff chapter 13)
Last

$$
\begin{array}{ll}
\vec{r}(t)=\text { position at time } t \\
\vec{r}(t)=(x(t), y(t), z(t))
\end{array}
$$

position vector
velocity vector $\vec{v}(t)=\frac{d r^{b}}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right)$

$$
\text { speed }=|\vec{v}(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}}
$$

velocity is refers to a vector
speed \rightarrow magnitude of velocity \rightarrow non negative number (non negative scalar)
accelarcution

$$
\begin{array}{r}
\vec{a}(t)=\frac{d \vec{v}^{D}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}=\left(\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}, \frac{d^{2} z}{d t^{2}}\right) \\
\vec{r}(t)=x(t) \rightarrow D+y(t) \overrightarrow{J^{2}}+z(t) \overrightarrow{\hbar^{2}}
\end{array}
$$

example:
curve
a) $\overrightarrow{r^{0}}(t)=\left(t^{2}, \sin t, e^{t}\right)$

Find the velocity and ceceberation of the cree
b) Find the turgent line to this curve at the point $P=\left(\pi^{2}, 0, e^{\pi}\right)$
a)

$$
\begin{aligned}
& \overrightarrow{v^{0}}(t)=\left(2 t, \cos t, e^{t}\right) \\
& \vec{a}^{-0}(t)=\left(2,-\sin t, e^{t}\right)
\end{aligned}
$$

(1)

$$
\left.\vec{r}(t)=\left(t^{2}, \sin t, e^{t}\right)\right]
$$

$$
\begin{gathered}
\left(t^{2}, \sin t, e^{t}\right)=\left(\pi^{2}, 0, e^{\pi}\right) \\
\Rightarrow t=\pi
\end{gathered}
$$

$$
\vec{V}(t)=\left(2 t, \cos t, e^{t}\right)
$$

we need this at the time we go through p

$$
\vec{V}(\pi)=\left(2 \pi,-1, e^{\pi}\right)
$$

directions of the turgent line
equation line

$$
\begin{aligned}
& \qquad(x, y, z)=\text { point }+u \text { direction } \\
& \qquad(x, y, z)=\left(\pi^{2}, 0, e^{\pi}\right)+u\left(2 \pi,-1, e^{\pi}\right) \\
& \text { parametric }\left\{\begin{array}{l}
x=\pi^{2}+2 \pi u \\
y=0-u \\
z=0 \pi+e^{\pi} u
\end{array}\right.
\end{aligned}
$$

Length of curve and arelength

distance travelled from time
x " a " to time " b " is tho length of the curve between the points $\vec{F}(a)$ and $\vec{r}(b)$

$$
\text { "speed }=\frac{\text { distance }}{\text { time }}
$$

"slistunce $=$ speed. time"

Length or chistance from time
$t=a$ to time $t=b$ is

$$
\text { Length }=\int_{a}^{b}|\bar{v} \Delta(t)| d t
$$

example: helix

$$
\overrightarrow{r o}(t)=(\cos t, \sin t, t)
$$

Find length of the helix from time 0 to time 2π.

$$
\begin{aligned}
& \vec{r}^{D}(t)=(\cos t, \sin t, t) \\
& \vec{\nabla} D(t)=(-\sin t, \cos t, \mathcal{L}) \\
& |\vec{v}(t)|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+1^{2}} \\
& \left|\vec{u}^{2}(t)\right|=\sqrt{\sin ^{2} t+\cos ^{2} t+1} \\
& \left|\vec{u}^{\prime}(t)\right|=\sqrt{2} \\
& \text { Length }=\int_{0}^{2 \pi}\left|\vec{v}^{\Delta}(t)\right| d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { length } h=\int_{0}^{2 \pi} \sqrt{2} d t \\
& \text { length }=2 \sqrt{2} \pi
\end{aligned}
$$

arclength (13.3) $\vec{r}(t)$ function $s(t) s(t)$

$s(t)=$ long th of the curve from time O to time "t"

$$
\delta \delta(t)=\int_{0}^{t}\left|\bar{v}^{0}(t)\right| d t
$$

now the upper bound is the variable " f "
example:

$$
\vec{r}(t)=\left(1, e^{t}, 3 e^{t}\right)
$$

find arclength function $s(t)$.

$$
\vec{v}^{D}(t)=\left(0, e^{t}, 3 e^{t}\right)
$$

$$
\begin{aligned}
& \left|\vec{v}^{2}(t)\right|=\sqrt{0^{2}+e^{2 t}+9 e^{2 t}} \\
& |\vec{v}(t)|=\sqrt{10 e^{2 t}} \\
& \left(\overrightarrow{v^{2}}(t) \mid=\sqrt{10} e^{t}\right. \\
& s(t)=\int_{0}^{t}|\vec{v}(t)| d t \\
& s(t)=\int_{0}^{t} \sqrt{10} e^{t} d t \\
& s(t)=\left.\sqrt{10} e^{t}\right|_{0} ^{t} \\
& \delta(t)=\sqrt{10}\left(e^{t}-1\right)
\end{aligned}
$$

〕 length of the cure between time " O " and time " t "
arclength parametrization,' of the carve: here you reverse the roles lend think of "t" as a function of " s "

$$
\begin{aligned}
& s=\sqrt{10}\left(e^{t}-1\right) \\
& \frac{s}{\sqrt{10}}=e^{t}-1 \\
& \frac{s}{\sqrt{10}}+1=e^{t}
\end{aligned}
$$

$$
\ln \left(\frac{s}{\sqrt{10}}+1\right)=t
$$

so you use this to rewrite $\vec{r}(t)$ as $\vec{r}(s)$, so you specify the position vector by "s".

$$
\begin{aligned}
& \overrightarrow{r^{0}}(t)=\left(1, e^{t}, 3 e^{t}\right) \\
& \vec{r}(s)=\left(1, e^{\ln \left(\frac{s}{\sqrt{10}}+1\right)}, 3 e^{\ln \left(\frac{s}{\sqrt{10}}+1\right)}\right. \\
& \vec{r}^{0}(s)=\left(1, \frac{s}{\sqrt{10}}+1,3\left(\frac{s}{\sqrt{10}}+1\right)\right)
\end{aligned}
$$

Finding aeculength parametriztor:
(1) Find $s(t)$
(2) Use that Cormola to corite "t" in terms of "s"
(3) substitute "t" in your expression for $\bar{r}^{-}(t)$ to get $\vec{r}_{(s)}$ exumple: helix

$$
\begin{aligned}
& \vec{r}(t)=(\cos t, \sin t, t) \\
& \overrightarrow{v^{0}}(t)=(-\sin t, \cos t, 1) \\
& \left|\vec{v}^{D}(t)\right|=\sqrt{2} \\
& s(t)=\int_{0}^{t}|\vec{v}(t)| d t \\
& s(t)=\int_{n}^{t} \sqrt{2} d t
\end{aligned}
$$

$$
\begin{gathered}
s(t)=\sqrt{2} t \\
s=\sqrt{2} t \\
t=\frac{s}{\sqrt{2}} \\
\left.\vec{r}(s)=\left(\cos \left(\frac{s}{\sqrt{2}}\right) \sin \left(\frac{s}{\sqrt{2}}\right) \frac{s}{\sqrt{2}}\right)\right)
\end{gathered}
$$

section 13.1 tangent vector $\vec{T}^{0}(t)$

$$
\vec{T}^{0}(t)=\frac{\vec{v}^{0}(t)}{|\vec{v}(t)|}
$$

$$
\begin{aligned}
& \text { example } \vec{r}^{\prime}(t)=\left(1, e^{t}, 3 e^{t}\right) \\
& \vec{v}^{0}(t)=\left(0, e^{t}, 3 e^{t}\right) \\
& \left|\vec{v}^{0}(t)\right|=\sqrt{10} e^{t} \\
& \vec{T}(t)=\frac{\vec{v}^{\prime}(t)}{\left|\vec{v}^{0}(t)\right|} \\
& \vec{T}(t)=\frac{\left(0, e^{t}, 3 e^{t}\right)}{\sqrt{10} e^{t}} \\
& \vec{T}(t)=\left(0, \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)
\end{aligned}
$$

section 13.2
if you are given
$\nabla^{\circ}(t)$, you can
find $\vec{r}(t)$ by integrating $\vec{V}(t)$ with respect o to "t"
say if
and

$$
\vec{v}(t)=\left(t, e^{t}, t^{2}\right)
$$

$$
\vec{r}(0)=(0,1, z)
$$

Find $r^{-t}(t)$

$$
\begin{aligned}
& \vec{r}(t)=\left(\frac{t^{2}}{2}+c_{1}, e^{t}+c_{2}, \frac{t^{3}}{3}-c_{3}\right) \\
& t=0 \\
& \vec{r}(0)=\left(c_{1}, \mid+c_{2}, c_{3}\right) \\
&=(0,1,2) \\
& c_{1}=0, c_{2}=0, c_{3}=2 \\
& \vec{r}(t)=\left(\frac{t^{3}}{2}, e^{t}, \frac{t^{3}}{3}+2\right)
\end{aligned}
$$

distance between parallel lines (not on the exam)

