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ERRATA FOR NUMBER 1
The first three of these errata have been corrected in the second printing.

Pages 47,140,142: The correct Background Reference is:
[Ca1] R. W. Carter, Simple Groups of Lie Type, Wiley and Sons, Lon-

don, 1972.

Page 142: The correct Expository Reference is:
[Ca2] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and

Complex Characters, Wiley–Interscience, London, 1985.

Pages 100, 102: In Definitions 12.1 and 13.1, the group G2(8) should be
removed from the set C3 and placed in T3.

Page 12, Lines -10 to -9: of significance only as part of the proof
significant only as part of the proof of

Page 20, Line -9: At the end of Section 5, add the following paragraph:
The p-layer Lp′(X) can alternatively be defined by Lp′(X) = Op

′
(E(X

mod Op′(X))). Here and elsewhere, if A is a function from groups to groups
such that A(G) ≤ G for every group G, and if N / G, we write A(G mod N)
to signify the full preimage in G of A(G/N).

Page 33, Line -12: x−α(t−1) x−α(−t−1)

Page 152, Line 14: Add an entry to the glossary: 23 Ky

ERRATA FOR NUMBER 2

Page 14, Line 4: Set X = K/Z(E(X)). Set Y = KZ(E(X)) and
Y = Y/Z(E(X)), so that Y = K.

Page 15, Line 20: 〈E(CX(E)) | |D : E| ≤ p〉 〈E(CX(F )) | |D : F | ≤ p〉
Page 15, Line 22:

〈
E(CX(E))

∣∣ |B : E| ≤ max{pn, p} and E ∈ W
〉〈

E(CX(F ))
∣∣ |B : F | ≤ max{pn, p} and F ∈ W

〉
Page 18, Line 20: π = {p} or π = 2′ π′ = {p} or π′ = 2′

Page 24, Line -10: first second

1



2

Page 115, Line 6: J ∼= SLn(rm), r odd J ∼= SLn(rm), n and r odd

Page 117, Line -3: A ≤ CP g(u) R1 ≤ CP g(u)

Page 117, Line -2: 1 6= R1 ≤ A ≤ P ∩P g ∩ Y 1 6= R1 ≤ P ∩P g ∩ Y
Page 122, Line 19: In Definition 21.1 p′-subgroups A-invariant
p′-subgroups

Page 172, Line -17: In Lemma 29.5, a hypothesis needs to be added.
The following is adequate, following the first sentence: Assume that there
is a mapping φ : E → D such that φ(i) ≥ i for all i ∈ E, and whenever
i, j ∈ E with i ≤ j, then φ(i) ≤ φ(j).

ERRATA FOR NUMBER 3

Page 18, Line 3: hα(t) = nα(t)nα(1)−1 hα(t) = nα(1)−1nα(t)

Page 18, Line -3: hrβ(α)(cα,βt) hrβ(α)(t)

Page 36, Line -11: q(σ,K) q(K,σ)

Page 37, Line 6: 2G2(2a+ 1
2 ) 2G2(3a+ 1

2 )

Page 43, Line 1: −a2m+1−i for 1 ≤ i ≤ m −a2m+2−i for 1 ≤ i ≤ m+1

Page 55, Line -11: In the statement of Lemma 2.5.7:
CAut1(K)(K) = 〈σ〉 CAut1(K)(K,σ) = 〈σ〉

Page 57, Line 18: At the end of Definition 2.5.10, add:

(a) (f) Aut0(K) = image of CAut0(K)(σ) in Aut(K).

Page 58, Line -10: If K ∼= Am(q), D2m+1(q) If K ∼= Am(q) (m > 1),
D2m+1(q)

Page 65, Line -2: J ⊆ Π̂ J ⊆ Π̂, J 6= Π̂

Page 69, Line -1: every eab by −e−a,−b every tmeab by (−t)me−a,−b
Page 70, Line 14: xai+aj (t) = 1 + t(ei,−j + ej,−i) xai+aj (t) =

1 + t(ei,−j + (−1)i+jej,−i)

Page 70, Line 15: x−α(t) = xα(t)A x−α(t) = xα(t)T

Page 70, Line 19: We may identify Except for the case D+
2 (2), we

may identify

Page 70, Line 26: eab by −e−b,−a eab by −e−a,−b
Page 70, Line -11: At the end of this paragraph, add:
In the exceptional case D+

2 (2), the group O+
4 (2) is an extension of E32 by

D8, and the index of its commutator subgroup is 4. We define Ω+
4 (2) to be

the kernel of the Dickson invariant in this case. Then Ω+
4 (2) is the direct

product of two root A1(2)-subgroups.

Page 173, Lines 20–21: For G = C2(q), the entries in rows tm and t′m
and in column CC∗(L

∗) of Table 4.5.1 should be {q − 1}2 and {q + 1}2,
respectively.

Page 173, Line 22: For G = Cm(q), m even, the entry in row t′m/2 and

column OutC∗o(L
∗) of Table 4.5.1 should be 1.
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Page 176, Line 4: the extension of Outdiag(K) by ΓK Outdiag(K)Γ

Page 176, Line 5: Insert before “The image”: Here Γ = ΓK if K is
untwisted, while if K = 2L(q), then K is the exponent 2 subgroup of ΦK .//

Page 176, Line 10,23,25,27: ΓK Γ

Page 181, Line -5: For G = E7(q), the entry in row t′4 and column CC(L)
of Table 4.5.2 should be (4, q + 1)

Page 211, Line 11: In Table 4.7.3B, the entry in row t4 (with q2 ≡ −1)
and column OutC(L) should be 1

Page 237, Line -3: P = PT (P ∩K) P0 = PT (P0 ∩K)

Page 237, Line -2: P P0

Page 237, Line -1: b =
∑
pm0|i

ni b =
∑

i=pcm0, c>0

ni

Page 261, Line -11: Fi′24 Fi23

Page 275, Line 5 of “SMALL REPRESENTATIONS”: F52 F32

Page 279, Line -7: L2(25) L2(25)#2

Page 288, Line -11: |M#| |O2(M)#|
Page 290, Line 1: E(C(2A)) E(C(2B))

Page 297, Line -18: K = Co1 K = Co0

Page 299, Line 16: lower bound for P ×Q8 is 30 lower bound for a
faithful complex representation of P ×Q8 in which the involution of Z(Q8)
acts as −I is 30

Page 302, Line 12: E(CK(z)) E(CK(zA))

Page 302, Line 16: becuase because

Page 302, Line 19: |H|3 |H|3
Page 304, Line -13: I is a homogeneous I-module V0 is a homogeneous
I-module

Page 304, Line -8: z ∈ Q′0 Z(J) ≤ Q′0
Page 308, Line -17: B/Z(B) ∼= 2 2E6(2) B/Z(B) ∼= 2E6(2)

Page 309, Line -6: K ∈ K K ∈ K and K is simple

Page 309, Line -1: or K ∼= J1 or K ∼= 2G2(3
n
2 ), n odd, n > 1, or

K ∼= J1

Page 314, Line 13: dim(W1) dim(Wi)

Page 316, Line -2: Vqα+ Vqβ Fqα+ Fqβ

Page 316, Line -2: Vqα Fqα

Page 317, Line 11: C(2×2)D4(2)(x) C(2×2)D4(2)(x1)

Page 317, Line 16: |Sp6(2)| |Sp6(2)|2
Page 319, Line 12: Q is abelian Q̂ is abelian

Page 319, Line 13: Q Q̂ (twice)

Page 319, Line 14: Q is abelian Q̂ is abelian
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Page 319, Line 15: Q Q̂ (four times)

Page 329, Line -12: (r2a + εra + 1)/3 (r2a + εra + 1)/d

Page 332, Line -3: Theorem 6.5.5a misstates the structure of Borel
subgroups of 2G2(3

n
2 ), n > 1. The assertion should be:

(a) Borel subgroups of K, of order q3(q − 1). If B = UH is such a Borel
subgroup, with |U | = q3 and |H| = q−1, and if t is the involution of H, then
|CU (t)| = q, and the groups O2(B), Z(U)H and B/Z2(U) are all Frobenius
groups.

Page 333, Line -9: Z2 × L2(q2) Z2 × L2(q)

Page 338, Line 1: Replace this line by: We proceed in a sequence of
lemmas.

Page 338, Line 10: Replace this line by: We set Y = K1X, so that
X ≤ Or′(Y ), and next prove:

Page 345, Line 11: ΓE2,∗−1(K) Γ′E2,∗−1(K)

Page 345, Line 12: ΓE2,∗−1(U) ≤ ΓE2,∗−1(K) Γ′E2,∗−1(U) ≤
Γ′E2,∗−1(K)

Page 345, Line 13: ΓE2,∗−1(K) Γ′E2,∗−1(K)

Page 354, Line 14: In the proof of Theorem 7.3.3, we omitted here a
reduction to the case that mp(E) = 2. This reduction is needed to justify
the assertion in line 15 that Γ = ΓE,∗−1(K). Thus, the following paragraph
should be inserted before “We set”: We first reduce the proof to the case

mp(E) = 2. Indeed, if the theorem holds in that case, then to complete the
proof we must argue that if a noncyclic elementary abelian p-group E acts
faithfully on K in such a way that one of the conclusions of 7.3.3 is satisfied
by each F ∈ E2(E), then E itself satisfies that same conclusion. This is
accomplished by a few observations in the various cases. In case 7.3.3c,
Out(K) has order 3 by 2.5.12, so m2(Aut(K)) = m2(K) = 3 and the desired
conclusion is obvious. In cases 7.3.3ehijkl, as well as the case K = 2A2(2) of
7.3.3a, it is immediate from 4.10.3 and 2.5.12 that mp(Aut(K)) = 2, with
Out(K) a p′-group in case (e) and mp(K) = 1 in cases (h) and (i). Thus
the desired conclusions hold in these cases as well. In the remaining cases,
it suffices to assume that mp(E) = 3 and derive a contradiction. In cases
7.3.3df, Out(K) is a p′-group by 2.5.12, and 4.10.3ae implies that mp(K) = 3
and that every element of K of order p lies in a conjugate of E. But in these
cases of 7.3.3 it is stipulated that certain conjugacy classes of K of order p
do not meet E, contradiction. In cases 7.3.3bg, we consider the character of
E on the natural K-module, which (since p 6= r) lifts to a complex character
χ. The conditions of cases (b) and (g) force χ(x) = −1 for each x ∈ E#.
As (χ, 1E) is an integer, χ(1) ≡ −1 mod p3. However, χ(1) = 5 or 8, with
p = 2 or 3, respectively, a contradiction. Finally, the only remaining case is
that 7.3.3a holds and E acts on K ∼= Lεp(q) like a subgroup E∗ ≤ GLεp(q),
and the preimage F ∗ in E∗ of any F ∈ E2(E) satisfies (F ∗)′ = Ω1(Z(K)).
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But then (E∗)′ = Ω1(Z(K)), and so CE∗(x) is a maximal subgroup of E∗

for all x ∈ E∗ − Z(E∗). Choosing such an element x and using mp(E) = 3,
we find y ∈ E∗ such that 〈x, y〉 is abelian and has a noncyclic image in E,
a final contradiction accomplishing our reduction.

Page 354, Line 22: p′-subgoup p′-subgroup

Page 357, Line -8: its Lie components. its Lie components. (See
also Definitions 4.2.2 and 4.9.3, and Proposition 4.9.4.)

Page 358, Line -2: 2F4(2
1
2 ) 2F4(2

1
2 )′

Page 364, Line -15: Then Then if we define Γr
′

Ê,∗−1
(K̂) to be the

subgroup of K̂ generated by all r-elements centralizing some subgroup of Ê
of index 2, we have

Page 365, Line -16: t
(3)
2 and t

(4)
2 t

′′
2 and t

′′′
2

Page 381, Line -4: Ψij Ωij

Page 381, Line -3: Ψij ∪ Ω0 Ωij ∪ Ω0

Page 382, Line 3: ΓE,∗−r(K) Γ′E,∗−r(K)

Page 382, Line 5: AΨij AΦij

Page 382, Line 8: then Ψij = Φij ; then

Page 382, Line 9: 4 = |Φij | = |Ψij | = |Ωij | + |Ω0| 4 = |Φij | =
|Ωij |+ |Ω0|
Page 382, Line 15: O2(AΦij) O2(AΦij )

Page 383, Line -7: Add the conclusion (a’) (p,K) = (3, L2(8)) or

(5, 2B2(2
5
2 ));

Page 384, Line 1: proved in [GL1,24–1] proved in [GL1,24–1, 24–4]
(the latter reference to be applied to X × Zp if mp(K) = 1)

Page 384, Line 21: eight nine

Page 384, Line 24: Add the conclusion (a’) ΓQ,1(K) = ΓP,1(K) is a
Frobenius group of order p2(p− 1) with Q ∼= Zp2 ;

Page 384, Line -13: Add the sentence: If 7.6.1a’ holds, then Q ∼= Zp2

and for every g ∈ P − Q of order p, CK(g) ∼= L2(2) or 2B2(2
2
2 ) is p-closed,

so ΓP,1(K) ≤ NK(Ω1(Q)), which is a Frobenius group as claimed (see 6.5.1,
6.5.4).

Page 385, Line 1: SL2(5) = 2A1(4), SL2(5) = 2A1(4), (2)2B2(2
3
2 ),

Page 385, Line 19: Add the condition: p divides |K|
Page 387, Line 15: But Since p divides |K|, it also divides |CK(x)|,
which embeds in Inndiag(L1) by 4.9.1b. Hence p divides |L1|. But

Page 396, Line -11: K locally k-balanced K is locally k-balanced

Page 399, Line -15: irreducibly on P irreducibly on Ω1(P )

Page 402, Line -4: Theorem 7.8.1 Proposition 7.8.1
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ERRATA FOR NUMBER 4

ERRATA FOR NUMBER 5

Page 3, Line -14: In the definition of K(7)∗, second line
{Aε4(q) | ε = 1 or q odd} {Aε4(q) | ε = 1 or q 6∈ {2, 4}}.

Page 11, Line 7: if and only if provided that
The converse is true under the extra assumption x ∈ Z(Q).

Page 11, Line 15: The converse is trivial.

Page 22, Line 17: Lo2′(CL(z)) Lop′(CL(z))

ERRATA FOR NUMBER 6

Page 464, Line 16: Φ(P ) Φ(Z)

ERRATA FOR NUMBER 7

Page 20, Lines 17 to 19: Replace Lemma 1.5 with the following weaker
lemma, proved in Lemma 2.8 of Chapter 2 of Volume 6.

Lemma. If T is a 2-group and m2(T ) ≥ 5, then T is connected and
possesses a normal subgroup isomorphic to E23 .

Note that Lemma 1.5, as printed in Volume 7, is the full strength of
MacWilliams’ theorem, which we do not prove, and which is not one of
our assumed Background Results. As we therefore cannot quote the full
strength, we avoid its use by providing the corrigenda below for pages
91ff. and 338.

Page 91, Line 11: All of Section 8 after the proof of Lemma 8.7 should
be deleted and replaced by the following. In the replacement, references are
made to certain portions of the old material, using the original numbering.

Lemma 8.14 (Alperin). Let T be a 2-group. Let A be a normal abelian
subgroup of T maximal such that A = Ω2(A). Then A = Ω2(CT (A)).

To prove Alperin’s lemma, we introduce the following terminology. If
T is a p-group, say that T is of class 2− if and only if Φ(T ) ≤ Z(T ).
Obviously, class 2− implies class 2.

Lemma 8.15. If T is a 2-group of class 2−, then Ω2(T ) has exponent
dividing 4.

Proof. Let x, y ∈ T with x4 = y4 = 1. Then x2, y2, [x, y] ∈ Z(T ), so

(xy)4 = (x2y2[x, y])2 = x4y4[x, y]2 = [x2, y] = 1.

�

Lemma 8.16. Let T be a 2-group. Let Q be a normal subgroup of T
containing an abelian subgroup E = Ω2(E) / T . If there is an abelian
subgroup Y = Ω2(Y ) ≤ Q such that |Y : E| = 2, then there is such a
subgroup which is normal in T .
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Proof. The proof is by induction on |T | + |Q|. Let Q1 =
〈
Y T
〉
/ T .

Then Y ≤ Q1 ≤ Q and if Q1 < Q, we are done by induction. So assume
that Q =

〈
Y T
〉
. We may assume that Y 6= T , so Q < T . By induction

there is U = Ω2(U) / Q with U abelian and |U : E| = 2. Hence U ≤ V ,
where V/E = Ω1(Z(CQ(E)/E)). In particular Ω2(V ) ≥ U > E. Notice
that V / T and V is of class 2−. Hence U = Ω2(U) ≤ Ω2(V ) / T . Choose
any X / T such that E < X ≤ Ω2(V ). By the preceding lemma, Ω2(V ) and
X have exponent dividing 4. The proof is complete. �

Lemma 8.14 follows immediately from Lemma 8.16, with Q = T .

Lemma 8.17. Let T be a 2-group. Then T is connected under either of
the following conditions:

(a) m2(T ) ≥ 5; or
(b) T ≥ E = Q1Q2Q3 with [Qi, Qj ] = 1 for all i 6= j and Qi ∼= Q8 for

all i = 1, 2, 3.

Proof. By [III2; 1.5], (a) is sufficient, so assume that m2(T ) ≤ 4 and
E exists as in (b). Since T is not of maximal class, there exists U / T with
U ∼= E22 and U 6= CT (U). Let U ≤ A ≤ T with A maximal with respect
to the properties that A is a normal abelian subgroup of T and A = Ω2(A).
By Alperin’s Lemma 8.14, A = Ω2(CT (A)). In particular, CE(A) = E ∩ A.
If m2(A) > 2, then T is connected. Hence we may assume that m2(A) = 2,
whence U = Ω1(A).

If |A| = 8, then a Sylow 2-subgroup of Aut(A) has order at most 8.
Then |E : E ∩ A| ≤ 8 and |E ∩ A| ≤ 8, whence |E| ≤ 26, contrary to
assumption. So, we may assume that |A| = 16, whence A ∼= Z4 × Z4.
Let S ∈ Syl2(Aut(A)) and S0 = CS(U) = CS(A/U) / S. Then S0

∼=
Hom(A/U,U) ∼= E24 and S/S0

∼= Z2. In particular, S contains no copy of
Q8. Hence, Φ(E) ≤ CE(A) = E ∩ A and AutE(A) is therefore elementary
abelian.

Suppose first that E is extraspecial with |E| = 27. Then Z(E) ≤ A. If
E∩A contains a cyclic subgroup B of order 4, then since B/E, |AutE(A)| ≤
8. and so A ≤ E, which is absurd. Therefore E ∩A ≤ U and so E ∩A = U
and AutE(A) ∼= 25. But S is not elementary abelian, a contradiction.

Therefore |Φ(E)| > 2, whence U ≤ Z(E) and so AutE(A) ≤ S0. Hence,
|E : A ∩ E| ≤ 24, and so |E ∩ A| ≥ 24. Thus A ≤ E and AutE(A) = S0.
We may assume without loss that Φ(Q2) 6= Φ(Q1) 6= Φ(Q3). Suppose that
E = Q1×Q2Q3. Let a ∈ A−U . Since [a,E] = [a,AutE(A)] = U , it follows
that a projects onto an element of Q1 of order 4. Then A/Z(Q2) projects
isomorphically onto Q1, contrary to the fact that A is abelian. Therefore,
E = Q1Q2Q3 with Z(E) a four-group and every element of E1(Z(E)) has
the form 〈zi〉 = Z(Qi) for a unique i = 1, 2, 3. Any element of E − U has
the form x = x1x2x3 with xi ∈ Qi. The set of indices for which xi 6∈ 〈zi〉
is uniquely determined and called the support of x. Elements with support
of cardinality 3 are involutions. Therefore A must be generated by two
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elements x, y with support of the same cardinality (1 or 2). But if this
cardinality is 1, A is obviously not self-centralizing. So the cardinality is
2, say overlapping in {1}. Then, since [x, y] = 1, we may assume that
x1 = y1 ∈ CE(A)−A, a final contradiction. �

Lemma 8.18. The following conditions hold:

(a) R0 is the commuting product of r − s quaternion groups;
(b) If r − s ≥ 2, then R is neither cyclic nor of maximal class; and
(c) If r − s ≥ 3 or m2(R) ≥ 5, then R and all of its overgroups are

connected.

Proof. As R0 ∈ Syl2(M0), Ri := R0 ∩Mi ∈ Syl2(Mi) is a quaternion
group for all i = 1, . . . r. Then (a) and (b) are obvious, and (c) follows
directly from Lemma 8.17. �

Lemma 8.19 (cf.Lemma 8.9). Suppose that there is a four-group D ≤ R
such that the pumpup of I in CG(d) is trivial for all d ∈ D#. Then some
2-overgroup of R is not connected and the following conditions hold:

(a) r − s ≤ 2 and s ≥ 2;

(b) Ĩ 6∼= L±3 (h) or SL2(h) for any h > 3; and
(c) Suppose b 6∈ IC(t, I). Then s = 2, I/O2′(I) ∼= HSpin+

8 (q) or
Spin±n (q) for some n ∈ {6, 7, 8}, and M1M2/O2′(M1M2) ∼= SL2(q1)∗
SL2(q2). Moreover Z ≤ R, Z∗(M1M2) ≤ Z∗(I) and either

m2(Z) = 3 with M̃3M̃4 = M̃3 × M̃4,

or
M̃ = (M̃1 ∗ M̃2)× (M̃3 ∗ M̃4).

Proof. The first three paragraphs of Lemma 8.9 show that some 2-
overgroup of R is not connected, whence by Lemma 8.18, m2(R) ≤ 4 and

r−s ≤ 2. As r ≥ 4, (a) holds. If Ĩ ∼= L±3 (h) or SL2(h), then s = 1, contrary
to (a), proving (b). Finally, suppose that b 6∈ IC(t, I). As s ≥ 2, the first

sentence of (c) holds by [III11;13.9]. Then Z ≤ R. If m2(Z) = 3 and M̃3M̃4

has a center of order 2, then m2(M) ≥ m2(M3M4) + 2 = 5, contrary to
the fact that some 2-overgroup of R is not connected. Hence, the second
statement of (c) holds by (8F2). �

Lemma 8.20 (identical to Lemma 8.10). The following conditions hold:

(a) I/O2′(I) 6∈ S;
(b) b normalizes I; and
(c) For any involution u ∈ CR(b), (u, Iu) is a trivial or vertical pumpup

of (t, I).

Proof. The proof is identical to that of Lemma 8.10. �

Now we sharpen our choice of the configuration (b, t, J1, . . . , Jr) satisfy-
ing (8F ). We assume, as we may, that we have chosen our configuration so
that in addition,
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(8M)
(1) |I/O2′(I)| is as large as possible;
(2) Subject to (1), |C(t, I)|2 is as large as possible; and
(3) Subject to (1) and (2), t ∈ Z ∩ I, if possible.

Note that (8M3) is realized if and only if |Z∗(I)| is even.

Lemma 8.21 (cf. Lemma 8.11a). The following conditions hold:

(a) Let z ∈ I2(Z ∩R). Then Iz is a trivial pumpup of I;
(b) s ≥ 2; and
(c) I/O2′(I) ∈ G6

2.

Proof. The proof of (a) is identical to that of Lemma 8.11a. Now
suppose that s = 1. Then Z ≤ J1R. Hence, if either m2(Z) ≥ 3 or
Z ∩ J1 ≤ R, then m2(Z ∩R) ≥ 2. Then by (a) and Lemma 8.19a, r− s ≤ 2
and so r ≤ 3, a contradiction. Thus we may assume that m2(Z) = 2 and
Z ∩ J1 � R. Then J = J1 × J2 · · · Jr with Z ∩ J2 · · · Jr = 1. But then

J cannot contain H0 as in (8F2), a final contradiction, proving (b). Since
I/O2′(I) ∈ G6

2 ∪ G7
2 by Lemma 8.20a, (c) follows immediately from (b).

�

Lemma 8.22 (cf. Lemma 8.11b). Either b ∈ IC(t, I), or t ∈ Z ∩ I and
Z ≤ R.

Proof. Suppose that b 6∈ IC(t, I). Then by Lemma 8.19c, Z∗(M1M2) ≤
Z∗(I) and Z ≤ R. By our choice in (8M), t ∈ Z ∩ I. �

We then modify the proof of Lemma 8.12.

Lemma 8.23 (cf. Lemma 8.12). If all pumpups of (t, I) are trivial, then
(t, I) is 2-terminal in G.

Proof. By definition of 2-terminality [IG, 6.26], it is enough to show
that for any z ∈ Ω1(Z(R))#, we have R ∈ Syl2(C(z, Iz)). By Lemma 8.22,
either t ∈ Z ∩ I or b ∈ IC(t, I). Let R ≤ R∗ ∈ Syl2(C(z, Iz)). Then
R∗ centralizes R ∩ Z∗(Iz). In the first case, t ∈ Z∗(Iz), and so R∗ = R,
as desired. So we may assume that b ∈ IC(t, I). Then our choice of R
guarantees that b ∈ RCS(R). But RCS(R) centralizes z ∈ Ω1(Z(R)) and
contains a Sylow 2-subgroup of M . Hence, z normalizes M1, . . . ,Mr and
then centralizes M/O2′(M) by [III11, 6.3e]. Thus we have z ∈ I2(C(t, I))∩
CG(M/O2′(M))∩CG(b). Then by Lemma 8.6a, (b, z, Iz, J1, . . . , Jr) satisfies
(8F), and the desired conclusion follows by the maximal choice in (8M). �

Now choose, as we may by [IG; 6.10], a 2-terminal long pumpup (t∗, I∗)
of (t, I). By Lemmas 8.4 and 8.3, m2(C(t∗, I∗)) = 1. By Lemma 8.21c,
I/O2′(I) ∈ G6

2, so by [III11;1.2], I∗/O2′(I
∗) ∈ G6

2. In particular, (t∗, I∗) ∈
J2(G). But (x,K) ∈ J∗2(G). By the definition of this term and by the
pumpup-monotonicity of F [III7, 3.2], [III11, 12.3e],

F(K) ≥ F(I∗/O2′(I
∗)) ≥ F(I/O2′(I)).

Thus, by Lemma 8.2ac,
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(8N)
F(I/O2′(I)) ≤ (q9, A) or (q4, BC), according as K/Z(K) ∼= L±4 (q)
or PSp4(q).

The possible isomorphism types of I/O2′(I) are further restricted by an

additional condition. Namely, b is restricted by Lemma 8.22, and M̃1 / /
C
Ĩ
(b).
We can now apply [III11, 12.7, 13.9] to obtain (cf. (8J)):

(8O)

(1) s = 2; and
(2) One of the following holds:

(a) Z ≤ R, and I/O2′(I) ∼= Spin±6 (q) or Ω+
8 (q

1
2 );

(b) I/Z∗(I) ∼= PSp4(q1) or G2(q1), q1 ≥ q, or L±4 (q).

Note that I/O2′(I) 6∼= Spin7(q), for otherwise, F(K) < F(I/O2′(I)).

Lemma 8.24 (cf. Lemma 8.13). (t, I) has a nontrivial pumpup in G.

Proof. As s = 2, we have r − s ≥ 2, and so m2(C(t, I)) > 1. Hence,
(t, I) is not 2-terminal in G by Lemma 8.3, and so Lemma 8.23 yields this
lemma. �

Now we let Iv2 (R) be the set of involutions u ∈ R for which Iu is a
vertical pumpup of I. We argue that

(8P) Iv2 (R) 6= ∅.
Suppose the contrary. Using Lemmas 8.20 and 8.19 instead of 8.10 and

8.9, we conclude, as in the four lines following (8L), that R is not connected.
Hence, r − s = 2. Let u ∈ I2(R) with Iu a nontrivial pumpup of I, as
guaranteed by Lemma 8.24, and chosen so that R1 := CR(u) has maximal
order. As u 6∈ Iv2 (R), Iu is a diagonal pumpup of I. Thus R1 has a subgroup
Ru of index at most 2 centralizing Iu/O2′(Iu).

Suppose there is a four-group E ≤ CR(〈u, b〉). Since we are assum-
ing that (8P) fails, (e, Ie) is a trivial pumpup of (t, I) for all e ∈ E# by
Lemma 8.20c. Then (u, Iu) is a trivial pumpup of (t, I) by [III11, 17.2],
as in the second paragraph in the proof of Lemma 8.9, a contradiction.
Hence, m2(CR(〈u, b〉)) = 1. As CR(b) ≥ R0, we certainly have u 6∈ Z(R).
Thus Z(R) ≤ R1 with Z(R) ∩ Ru = 1, whence R1 = Z(R) × Ru with
|Z(R)| = 2. As R1 < R, we may choose a ∈ NR(R1) − R1 with a2 ∈ R1.
Our maximal choice of u implies that a centralizes no involution w ∈ Z(Ru),
since otherwise CR(w) ≥ R1〈a〉, contrary to the choice of u. Since a leaves
Φ(R1) = Φ(Ru) invariant, we conclude that Φ(R1) = 1 and so R1 is ele-
mentary abelian. Also, a leaves Ru ∩ Rau invariant, whence |Ru| = 2 and
|CR(u)| = 4. But then R is dihedral or semidihedral by [IG; 10.24], contrary
to R0 ≤ R with r − s = 2, proving (8P).

Finally, we choose u ∈ Iv2 (R) with |CR(u)|maximal. Then I/O2′(I) ∈ G6
2

by Lemma 8.24b. Moreover, (u, Iu) has a 2-terminal long pumpup (v, I1) by
[IG; 6.10] and then

F(I/O2′(I)) ≤ F(Iu/O2′(Iu)) ≤ F(I1/O2′(I1)) ≤ F(K),
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since (x,K) ∈ J∗2(G). As s = 2 and F(I/O2′(I)) ≤ (q9, A), we have that one
of the following holds:

(8Q)
(1) I/Z∗(I) ∼= PSp4(q1) or G2(q1) for some q1 ≥ q, L4(q) or U4(q);

or
(2) I/O2′(I) ∼= Ω+

8 (q
1
2 ),

with t ∈ Z(I) in the second case.
Now (u, Iu) is a vertical pumpup of (t, I) and F(Iu/O2′(Iu)) ≤ F(K).

As t ∈ Z(I), we cannot have (t, I) < (u, Iu) with I/O2′(I) ∼= Ω+
8 (q

1
2 ) and

Iu/O2′(Iu) ∼= Spin9(q
1
2 ). Hence (8Q1) holds. Then by [III11, 12.6b], the

only possibilities for (I/O2′(I), Iu/O2′(Iu)) satisfy

CAut(Iu/O2′ (Iu))(I ∩ Iu/I ∩O2′(Iu)) ∼= Z2.

Hence if we set Ru = CR(u), then Ru = 〈t〉 ×Rt, where R1 = C(u, Iu) ∩R.
Furthermore, by [III11, 12.6b], the pumpup of Iu in CG(u′) is trivial for
all u′ ∈ I2(R1), which implies that Iu′/O2′(Iu′) ∼= Iu/O2′(Iu). By Lemma
8.18b, R is neither cyclic nor of maximal class, so it follows by [III2; 1.16]
and the maximal choice of u that u ∈ Z(R). Thus Ru = R and |R/R1| = 2.
Hence any involution in a quaternion subgroup of R lies in R1. Hence, in
particular, if z ∈ I2(R ∩M3), then (z, Iz) is a nontrivial pumpup of (t, I).
However this contradicts Lemma 8.21, completing the proof of Proposition
8.1.

Taken together, Propositions 2.3, 2.6, 3.1, 4.1, 6.1, and 8.1 imply Theo-
rem 2.

Page 142, Lines 21 to 23: Delete the last two sentences of the proof of
Lemma 14.27. Replace with the following:

Let X = NAutK(E). Write AutL(E) = 〈t, t′〉, where t and t′ are trans-
positions in AutK(E) ∼= Σ5, and reflections on E. Note that CE(〈t, t′〉) = D.
By [III11, 22.6] (see below), with the role of R there played by N , there is
s ∈ I2(X), also a reflection on E, such that X1 := 〈t, t′, s〉 is a faithful
extension of Z4 × Z4 by Σ3, and t, t′, and s are X1-conjugate. As s is a

reflection on E, D1 := CE(X1) = CD(s) 6= 1; let d ∈ D#
1 . By all the cases of

Proposition 12.1 ruled out so far, the pumpup Ld of L in CG(d) is either a
level pumpup of L ∼= SL3(q2), or Ld ∼= Aη5(q), q = 4n, η = (−1)n+1. Hence
by [III11, 22.7] (see the erratum for page 339 below), AutLd(E) contains no
copy of X1. But X1 =

〈
tX1
〉
, with t ∈ AutL(E), so X1 ≤ AutLd(E). This

contradiction completes the proof of the lemma.

Page 338, Lines 8 to 21: Replace these lines with the following:
In particular, X1 ∈ Lie(r). Let L = Or

′
(CX1(x)), a central product

of groups in Lie(r). We may assume that L = A1(rk)u for some k, for
otherwise m2(L) > 1 and we are done. Using [IA; 4.5.1, 4.5.2], and our
assumption that m2(X1) ≥ 3, we are reduced to the following cases for X1,
L, and the conjugacy class of x in the notation of [IA; 4.5.1]: (X1, L, x) =
(A±3 (q)u, A1(q2), t′2), (B2(q)u, B1(q), t1 or t′1), (B2(q)u, A1(q2), t′2).
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Page 339, Lines -15 to -1: Delete Lemma 22.5 and replace it with the
following two lemmas:

Lemma 22.6. Let V = E54 and X ≤ Aut(V ) ∼= GL4(5). Suppose that
R = O2(X) is of symplectic type and w(R) ≥ 2. Suppose that H ≤ X with
H ∼= Σ5. Let t ∈ H be a transposition which is a reflection in X, and let
t′ ∈ tH be such that W0 := 〈t, t′〉 ∼= Σ3. Then there exists a reflection s ∈ X
such that 〈W0, s〉 = D0W0 with F ∗(D0W0) = D0

∼= Z4 × Z4 and s ∈ tD0W0.

Proof. Since w(R) ≥ 2, R (or any extraspecial subgroup of R of width
2) is absolutely irreducible on V , so CX(R) = Z(R) is cyclic of order dividing
4. Let H0 ≤ H with 〈t, t′〉 ≤ H0

∼= Σ4 and let H1 =
〈
tH0R

〉
≥ 〈t, t′〉. Let

v = tt′ ∈ I3(H0).
Suppose first that [R, v] ∼= Q8. Therefore H ′ := [H,H] has a unique

nontrivial module on R/Φ(R), and it is the natural A5 permutation module,
which is projective. Hence [R,H ′] ∼= Q8∗D8 and [R,H ′] / RH ′. Then [R,H ′]
has exactly 5 E22-subgroups, and they are permuted transitively by H ′. As
a result, one of them, say U , is normalized by O2(H0) and hence centralized
by O2(H0). Then E24

∼= UO2(H0) ≤ [X,X] ≤ SL(V ), a contradiction as
m2(SL(V )) = 3.

Therefore [R, v] has width 2. As v ∈ H1 / H0R, [R, v] ≤ H1. If O2(H1)
were of symplectic type, then [O2(H1), v] would be extraspecial and equal
[R, v]O2(H0). But then R = Z(R)[R, v] would centralize O2(H0), a contra-
diction. Therefore O2(H1) is not of symplectic type. Hence by P. Hall’s
theorem, there is a noncyclic elementary abelian E char O2(H1), whence
E / H1. Now H1 ≥ H0[R, v] so |H1|2 ≥ 28. Since H1 is irreducible on V , it
is indecomposable on V . Hence by [III17, 1.4] H1 is monomial on V , and is
writable as H1 = FΣ, where Σ ∼= Σ4 permutes the four subspaces in a frame
F of V naturally, and F is diagonal with respect to F. Since |H1|2 ≥ 28, F
has exponent 4. If |H1|2 = 28, then Z(R) ∩ F ∼= Z2, and F/Ω1(F ) ∼= E22 .
But this is impossible as the natural permutation module of Σ4 has a unique
minimal submodule and it is a trivial module. Therefore |H1|2 > 28, whence
Z(R) ∼= Z4 and Z(R) ≤ H1. Then |R[F, v]/Ω1(R[F, v])| ≥ 23 so |H1|2 = 29

and F ∼= Z4 × Z4 × Z4.
Finally, F0 := [F, v] ∼= Z4 × Z4 is W0-invariant as 〈v〉 / W0. Moreover,

F0W0/Ω1(F0) ∼= Σ4 is generated by the images of t, t′, and a further F0-
conjugate s of t. Hence F0W0 = 〈t, t′, s〉 and the proof is complete. �

Lemma 22.7. Let L = L3(16n). Suppose that M ∈ K5 ∩ Chev(2) and
either M = L or L ↑5M . In the latter case assume that m5(M) = 3 and
either q(M) = q(L) or M ∼= Aη5(4n), η = (−1)n+1. Assume also that
F(M) ≤ (1616n, A). Let P ∈ E5

3(M). Then AutM (P ) does not contain a
faithful extension of Z4 × Z4 by Σ3.

Proof. If q(M) = q(L), then since F(M) ≤ (1616n, A), M has un-
twisted Lie rank at most 3 or M/Z(M) ∼= L5(16n). Hence AutM (P ) is
a Weyl group of type A4, A3, C3, or A2. It is then clear that AutM (P )
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does not contain a copy of Z4 × Z4. Finally, suppose that M ∼= Aη5(4n),
η = (−1)n+1. Again AutM (P ) ∼= W (C3) so the lemma is proved. �

ERRATA FOR NUMBER 8

Page 541, Line 18: Add the sentence: (Here ε = ±1, and in the unitary
case, “diagonalizable” means with respect to an orthonormal basis.)

Page 541, Line 19: SLn(q) SLεn(q)

Page 541, Line 20: Ln(q) ≤ X ≤ PGLn(q) Lεn(q) ≤ X ≤ PGLεn(q)

Page 541, Line 25: PGLn(q)/Ln(q) PGLεn(q)/Lεn(q)

ERRATA FOR NUMBER 9

Page 312, Line -4: Add the condition q 6∈ {2, 8}.
Page 344, Line -11: K = L4(3) K = L±4 (3)

Page 357, Line -1: Add the sentence: In the final assertion, (b) or (c)
holds or K is a quotient of Ω±6 (3), and the assertion is easily checked.

Page 358, Line 21: andK and K

Page 375, Line -8: vr = 2 r = 2

Page 436, Line 4: invering inverting

Page 444, Line 7: resuult result

Page 457, Line 8: respectiive respective

Page 505, Line -6: Add the condition q 6∈ {2, 8}.
Page 508, Line -10: L4(8), L5(8), L4(8) or L5(8).

Page 512, Line 22: so X so x


