CURVATURE FLOW OF COMPLETE HYPERSURFACES IN
HYPERBOLIC SPACE

LING XIAO

ABSTRACT. In this paper we continue our study of finding the curvature flow
of complete hypersurfaces in hyperbolic space with a prescribed asymptotic
boundary at infinity. Our main results are proved by deriving a priori global
gradient estimates and C? estimates.

1. INTRODUCTION

In this paper, we continue our study of the modified curvature flow problem
in hyperbolic space H"t!. Consider a complete Weingarten hypersurface in H"*+!
with a prescribed asymptotic boundary I' at infinity, whose principal curvatures
satisfy f(k[2o]) < o (e.g. we can choose a constant mean curvature graph as found
in [NS96]), and is given by an embedding X(0) : Q — H"*!, where Q C 9, ,H"*1.
We consider the evolution of such an embedding to produce a family of embeddings
X :Qx[0,T) — H"! satisfying the following equations

X = (f(k[X]) —o)vy in Qx[0,T),

(1.1) X=T on 90 x [0,T),
X(0) = %g in Q x {0},
where x[X(t)] = (K1, , Kn) denotes the hyperbolic principal curvatures of X(t),

o € (0,1) is a constant, and vy denotes the outward unit normal of 3(¢) with
respect to the hyperbolic metric.
In this paper we shall use the half-space model
H" = {(z,2,11) € R"™ 2,1 > 0}

equipped with the hyperbolic metric
n+1 2
ST dx

(1.2) ds® = 72131 o
x

n+1

One identifies the hyperplane {z,1; = 0} = R" x {0} C R™"! as the infinity of
H"+!, denoted by O,,H"'. For convenience we say ¥ has compact asymptotic

boundary if 9% C O,,H" ! is compact with respect to the Euclidean metric in R™.
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We assume the function f satisfies the following fundamental structure condi-

tions:

(1.3) fily) = 8({;/(\/\) >0 inK, 1<i<n,
(1.4) f is a concave function in K,
and

(1.5) f>0in K, f=0 on 0K,

where K C R™ is an open symmetric convex cone such that
(1.6) K :={)\ € R": each component )\; >0} C K.
In addition, we shall assume that f is normalized

(1.7) f1,-- 1) =1

and satisfies the more technical assumptions

(1.8) f is homogeneous of degree one

and

(1.9) thf FA, - s An—1,An + R) > 1+ €9 uniformly in Bs, (1)
—+00

for some fixed ¢¢ > 0 and §p > 0, where Bs,(1) is the ball centered at 1 =
(1,---,1) e R™

As we can see in [GS0§], an example of a function satisfying all of these assump-
tions above is given by f = (H;.C/Hl)ﬁ7 0 <[ < k, defined in K, where H; is the
normalized | —th elementary symmetric polynomial.(e.g, Hy =1, H; = H, H, = K
the extrinsic Gauss curvature.)

Since f is symmetric, from , and we have
1
(1.10) FO SO+ LM =1) = fil)hi=—> A\ in K

and

(1.11) SR = F)+ S AN -A) = F(1) =1 in K.

In this paper, we always assume the initial surface ¥y to be connected and
orientable, 3(t) = {(z,u(z,t))|lz € Q, xpy1 = u, 0 < ¢ < T} to be the flowing
surfaces, and the position vector X = (z, u(z,t)) satisfies the flow equation (L.1)).
If ¥ is a complete hypersurface in H*t! with compact asymptotic boundary at
infinity, then the normal vector field of ¥ is always chosen to be the one pointing
to the unique unbounded region in Riﬂ /%. In this case, both the Euclidean and
hyperbolic principal curvature of X are calculated with respect to this normal field.

We shall take I' = 92, where @ C R" is a smooth domain and let T'. denote
its vertical lift. We seek a family of hypersurfaces 3(t) as the graph of a function
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u(zx,t) with boundary T satisfying equation (|1.1)). Then the coordinate vector fields
and upper unit normal are given by
—ue; + e
X; = e+ uiept1, vy =uy =u——— - Zw ol
where through out this paper w = /1 + |Vu|? and e,y is the unit vector in the
positive z,, 1 direction in R**1,
Notice that
Xovi) =f-o,
(Kovm), =1

which is equivalent to

0
(x,u(w,t)),VH> =f-o
(3 )
Thus the height function u satisfies equation
(1.12) uy = (f — o)uw.
Therefore problem (|1.1) can be represented as the Dirichlet problem for a fully

nonlinear second order parabolic equation
u=uw(f—o) inQxI[0,T),
(1.13) u(z,t) =0 on 002 x [0,T),
u(z,0) = ug in Q x {0}.

In this paper, we shall focus on proving the long time existence of the modified
general curvature flow (MGCF) of a complete embeded hypersurface with initial
surface g = {(z,uo(z)), € Q} satisfying f(k[Z0]) < o and 1/w(ug) > o. These
additional assumptions will be needed in the proof of Proposition (Note that
for constant mean curvature graph the latter assumption is trivial.) Following the

literature we define the class of admissible functions :
AQr) = {u € C*(Qr) : k[u] € K}.

Condition implies that equation is parabolic for admissible solutions.
Our goal is to show that the Dirichlet problem admits smooth admissible
solutions for all 0 < o < 1. Due to the special nature of the problem we saw in
[GS08], there are substantial technical difficulties to overcome and we have not
yet succeeded in finding the solutions for all o € (0,1). However, we succeed in
improving the result in [GS08] by extending the range of allowable o from (0.3704, 1)
to (0.1460,1).

Theorem 1.1. Let T = 9Q x {0} € R™"! where Q is a bounded smooth domain
in R™. Suppose that the Euclidean mean curvature Hapo > 0 and o € (0, 1) satisfies

o > o0g, where oy is the unique zero in (0,1) of

1
(1.14) d(a) == —a — —a® — —=(a® + 3)*/2.
(Numerical calculations show 0.14596 < o < 0.14597.)
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Let Yo = {(z,up(x))|z € Q)} be the initial surface satisfying f(k[Xo]) < o and
o < \/ﬁ in Q. Under conditions - , there exists a solution X(t),
t € [0,00), to the MGCF with uniformly bounded principal curvatures

(1.15) |k[E(t)]] < C on X(t), ¥Vt € [0,00).

Moreover, 3(t) = {(z,u(z,t)) | (z,t) € Q x [0,00)} is the flowing surfaces of
the unique admissible solution u(z,t) € C™(Q x (0,00)) N W2 x [0,00)) of
the Dirichlet problem , where p > 4. Furthermore, for any fized t € [0,00),
u?(z,t) € C°(Q) N CHL(Q) and

(1.16) V1+[Du2<C inQ,

(1.17) u|D*ul < C in Q.

In addition, as t — oo, u(z,t) converges uniformly to a function u(x) € C=(2) N
CL(Q) such that Yo = {(z,u(z)) | € Q} is a unique complete surface satisfies
f(k[Xs]) = 0 in HTL

Equation ([1.13)) is degenerate when u = 0. It is therefore very natural to approx-
imate the boundary condition v = 0 on 92 x [0,T) by u = € on 9Q x [0,T), for
€ > 0 sufficiently small. So the problem becomes

uy = uw(f — o) in Qx[0,7),
(1.18) u(z,t) =¢ on 90 x [0,7),
w(z,0) =uf =ug+e in  x {0},

where 3§ = {(z, uf)|r € Q} satisfies f(k[2§]) < 0 and —L~ > o, Vo € Q.

w(uf)

Theorem 1.2. Let Q be a bounded smooth domain in R™ with Haq > 0 and suppose

f satisfies 7@. Then for any o € (0,1) and € > 0 sufficiently small, there
exists a unique admissible solution u¢ € C°° (2 x (0,00)) of the Dirichlet Problem

. Moreover, u¢ satisfies the a priori estimates

(1.19) V1+|Due|2 < C in Q% [0,00),

(1.20) uf|D*uf| < C on 9N x [0, 00),
and
(1.21) uf|D*uf| < Cle,t) in Q x [0, 00).

In particular, C(e,t) depends exponentially on time t.

Remark 1.3. The a priori estimates (|1.19)) and (1.20)) will be proved in section
and 5] while (1.21)) can be derived by combining Theorem [3.1and Lemma6.2] with
the standard maximum principle for parabolic equations.
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The paper is organized as follows. In Section [2] we establish some basic identities
for hypersurface in H**1. In Sectionwe state the short time existence theorem and
derive evolution equations for some geometric quantities. In Section [4] we use the
mean convex condition on the boundary to establish a sharp global gradient bound
for w. In Section [p] we show the boundary second derivative estimates. In Section [f]
we prove a maximum principle for the maximal hyperbolic principal curvature by
using radial graphs (this idea is from [GSZ09]). Finally in Section |7| we prove that

as t — oo, X(t) converges uniformly to a hypersurface 3 satisfies f(k[X]) = o.

2. FORMULAS FOR HYPERBOLIC PRINCIPAL CURVATURES

2.1. Formulas on hypersurfaces. We will compare the induced hyperbolic and
Euclidean metrics and derive some basic identities on a hypersurface.

Let ¥ be a hypersurface in H**!'. We shall use g and V to denote the induced
hyperbolic metric and Levi-Civita connections on ¥, respectively. Since ¥ also can
be viewed as a submanifold of R**!, we shall usually identify a geodesic quantity
with respect to the Euclidean metric by adding a ’tilde’ over the corresponding
hyperbolic quantity. For instance, § denotes the induced metric on ¥ from R"+!,
and V is its Levi-Civita connection.

Let (21, -+ ,2,) be local coordinates and
0
= =1, ,n.
! 8251

The hyperbolic and Euclidean metrics of ¥ are given by
(2.1) gij = <Ti7Tj>Ha Gij =Ti " Tj = Uzgija

while the second fundamental forms are

(2.9) hij = (Dr,7j,v) g = — (Do VE, Tj) g 5
' ilij:V'Dq—iTj:—Tj‘DﬂI/,
where D and D denote the Levi-Civita connection of H"*! and R™1, respectively.

The following relations are well known (see equation(1.7),(1.8) of [GS0§] ):

1~ Vn+1 _
(23) hij = ah” + 7u2 Gij-
(2.4) ki =uf; " i=1, o,

where "t = v e, 4.
The Christoffel symbols are related by formula

N 1 o
(2.5) Iy =Tp - a(uiékj + ujbik — G wdis)-

It follows that for v € C?(X)

1 - -
(2.6) Vijv =vij — Ffjvk =V,v+ E(uwj + uv; — gklulvkgij)
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where and in the sequel (if no additional explanations)

Ov 8%v

7 = et

Vi Oz;’ Yig Ox;0x;’ cre
In particular,

~ 2uu; 1 _

(2.7) Viju = Viju+ —=~ — agklukulgij«
Moreover in R**1,
(2.8) Fuguy = [Vu? =1 — (b2
(29) @iju = ilijl/n+1.
We note that all formulas listed above still hold for general local frame 7y,--- | 7.
In particular, if 71, - , 7, are orthonormal in the hyperbolic metric, then g;; = ;5

and gij = uzéij.
We now consider equation (|1.1)) on ¥. For K as in section 1, let A be the vector
space of n X n matrices and

A = {A={a;} € A: \A) € K},

where A(A) = (A1, ,An) denotes the eigenvalues of A. Let F be the function
defined by

(2.10) F(A) = f(MA), Ae Ak
and denote
(2.11) FU(A) = 8—F(A), FUk(A) = O°F

8(1@ 1 8ai -aakl
J J

Since F'(A) depends only on the eigenvalues of A, if A is symmetric then so is the
matrix {F%(A)} . Moreover,

F9(A) = fibi;

when A is diagonal, and

(2.12) Fii(A)ay = 3 fiAA)A = F(A),

(2.13) Fi(A)aipaze =Y fi(MA)AF.

Equation can therefore be rewritten in a local frame 74, , 7, in the form
ur = uw(F(A[X]) — o) (x,t) € Q x[0,T),

(2.14) u(z,t) =0 (z,t) € 00 x [0,T),
u(z,0) = ug (z,t) € Q x {0},

where A[X] = {g"*hy; } .
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2.2. Vertical graphs. Suppose X is locally represented as the graph of a function
u € C?(Q), u> 0, in a domain  C R" :
Y = {(z,u(z)) e R : 2 € Q}.

In this case we take v to be the upward (Euclidean) unit normal vector field to X :

Du 1
V= (u,>, w = +/1+ |Dul?.
w

w

The Euclidean metric and second fundamental form of ¥ are given respectively by

Gij = 0ij + wiuy,

and
- "

As shown in [CNS86], the Euclidean principal curvature #[X] are the eigenvalues of
symmetric matrix fl[u] = [ai;] :

~ L ik, 1j
(215) aij = E’y ukl’yj,
where

=g - —

K T w(l +w)

Note that the matrix {7/} is invertible with the inverse

Ui Uj

14w

which is the square root of {g;;}, i.e., YikVyk; = ;. From we see that the
hyperbolic principal curvatures x[u] of ¥ are eigenvalues of the matrix Afu] =

{aijul} :

1 , .
(2.16) aij = (05 + uy ™ ury) .

Vij = 0ij +

When ¥ is a vertical graph we can also define F(A[X]) = F(A[u]).

2.3. Radial graphs. Let V’ denote the covariant derivative on the standard unit
sphere S” in R"*! and y = e,41 -z for z € S* € R"*!. Let 7q,---,7, be a local
frame of smooth vector fields on the upper hemisphere S’ and denote 7; - 7; = 03;.

Suppose that locally ¥ is a radial graph over the upper hemisphere S% C R+
i.e., it is locally represented as

(2.17) X =e"z, z€S} CR"TL
The Euclidean metric, outward unit normal vector and second fundamental form
of ¥ are
(2.18) gij = €% (045 + VivVjv),
v/
(2.19) =270 = 1+ | V)V

w
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and
7 e’ 1 ! l
respectively. Therefore the Euclidean principal curvatures are the eigenvalues of
the matrix
- e ik 1
(2.21) iy = — (V"Vigy —oi)
where
i = gii Y
w(l+ w)

and v’ = O’ikV;C’U. Note that the height function is u = ye”. We see that the

hyperbolic principal curvatures are the eigenvalues of matrix A*[v] = {a;[v]} :

1 . .
= (y7* Vi — e V'voy;) .

In this case we can define F(A[X]) = F(A%[v]).

(2.22) ai;[v] :

ij

3. SHORT TIME EXISTENCE AND EVOLUTION EQUATIONS

3.1. Short time existence. In order to prove a global existence for the Dirichlet
problem ([1.18]), we first need a short time existence theorem. Though this theorem
is standard, for completeness we state it as follows:

Theorem 3.1. Let G(D?u,Du,u) be a nonlinear operator that is smooth with
respect to D?u, Du and u. Suppose that G is defined for a function u belonging to
an open set A C C?(Q) and G is elliptic for any u € A, i.e., GY > 0, then the

imitial value problem
uy = G(D*u, Du,u) in  x [0,T%),
(3.1) u(z,0) = ug in  x {0},
u(z,t) =0 on 092 x [0,T%),

has a unique smooth solution uw when T* = e¢ > 0 small enough, except for the
corner, where ug € A be of class C*(Q).

3.2. Evolution equations for some geometric quantities. For the reader’s
convenience, we now compute the evolution equations for some affine geometric
quantities that were first derived in [LX11]. In this section we shall write F;; =
VijF, uij = Vl-ju, .FJZ = gilﬂj, etc.

Lemma 3.2. (Evolution of the metrics). The metric g;; and §;; of X(t) satisfies
the evolution equations
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(3.2) gij = —2u_2§ij (F - o)w - 2u_1(F - O')ilij7
and

Proof. Since g;; = 7; - 7§,

%gm— =2(D. X, D, X)
= 2D, [(F - o)u],7;)

=2(F —o)u <B7i1/, Tj>

= —2(F — U)uhij.
From equation ([2.1)) we get
0 3 oz
% = ~2u SGijue +u” g

= —2u"3G;;(F — o)uw — 2u™?(F — o)
= —2u"2§;;(F — o)w — 2u™ (F — o)h
a

Lemma 3.3. (Evolution of the normal). The normal vector evolves according to

(3.4) v =—g"[(F - o)ulij,
moreover,
(3.5) v = G [(F - o)uliu,.

Proof. Since v is the unit normal vector of ¥, we have v € T(X). Furthermore,

differentiating
(v, ) = <V, DTiX> =0,
with respect to t we deduce
(7)) = — <y, D,.[(F - J)w/]>
= — (W [(F = o)uliv)

= —[(F = o)ul.
So we have
v =—g(F — o)ul;T;,
and follows directly from
v = (v,e) = —§Y[(F — o)uliu,.
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Lemma 3.4. (Evolution of the second fundamental form). The second fundamental

form evolves according to

(3.6) Bl = [(F — o)ult +u(F — o)hfhl,
(37) iLl‘j = [(F — O’)U]Z‘j — ’LL(F - 0>B?Bkj,
and
. 1 h
hij = —{[(F = o)uls; — u(F = 0)hfhi;} - *w(F —0)
(3.8) u u
~kl Gij (F - U)Vn+1 7 9ij
—{g" [u(F _‘7)]ku} _2Thij_2§(F_a)'
Proof. Differentiating (3.4]) with respect to 7; we get
0 5 B ~
priche — " (F = o)ulpim — §*[(F — o)u)p Dy, 7.

On the other hand, in view of the Weingarten Equation
v = "y = vi = —hFr — RED,, X,
where Bk = gklim is mixed tensor. Multiplying by 7; we get
—hkgkj — hk <DTkX,Tj> = —g"(F — o)ulkigi; — " [(F — o)ul <l~)n7'l, Tj> .
Thus
Wegs = M ((F = 0)ulkigis — Wu(F = o) ( Dy 7 ) +G71(F = o)l (Drmy7y)
= [(F = o)ulis + u(F = o)k his + §[(F = o)l ( Do, 75 )

Multiplying by §7! we get (3
Moreover, since hza = hlglj7 by equatlon and we have

hij = héézj + higy
= [(F = o)ullgi; + w(F — o)hf higi; + hi[—2(F — o)uhy;]
= [(F = o)ulij — u(F — o)hfhy;.

Finally, by differentiating (2.3|) with respect to ¢, we get

9 1 ﬁi' Gij . prtl Vn+1§i,
Eh” = Ehij - u*gjut + ufé” Ty w2 Jii 2 W g
1 hi;
= E{[(F — o)ulij — u(F — o)hfhi;} — *w(F —0)
~ n—+1 ~ n+lzs. .
(3:9) + %;{—g“ [wW(F — o))} + ——[-2(F — o)uhi;] — Q%uw(F —0)
1 . hij
= {I(F = o)ulsj — u(F — )k} = “Lu(F - o)
_ n+1 _ 5
g — oy 2 2T 08 e )

U u2
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Lemma 3.5. (Evolution of F). The term F evolves according to the equation

1 ..
Fo=—-FY[(F —-o)uly;+(F—-o s/-iﬁ —"TLE 4 (pn )2 s
510 —FY[(F = o)uli; + (F =) [Y_ f + Y g

+w(F — o) (F —pntl ng) —[(F - U)U]iuiZfS.
Proof. We consider F' with respect to the mixed tensor hf From equation 1 ,
(3.5), and (3.6)) we conclude
Fy = F(h]), = FY (uh] +v" 1635
t
= uF9((F - o)u)l + u2(F — o)FIhkR]
(3.11) +uw(F — o)Fi9h! — [(F — o)u)u’ Z fs
1 ..
— ZRU[(F — [ K2t n+1y2 S]
LEOE — ayaly + (= ) [ £k = 2 E 4 7Y g

+w(F - o) (F — oyl Z fs) —[(F = oyt 3 .

4. GRADIENT ESTIMATES

In this section we will show that the angle between the upward unit normal and
en+1 axis is bounded above upon approaching the boundary. We will also prove
Proposition 4.3 which gives us a global gradient bound for the solution.

The followmg lemma is similar to Theorem 3.1 of [GS10].

Lemma 4.1. For e > 0 sufficiently small,

_ ntl 1— o2 1
(4.1) o vt V1ot dlH9) g jo,1),
u 1 r?

where 11 is the maximal radii of exterior sphere to 0S.

Proof. Applying Theorem and letting T' be small enough, we first assume r; <
oo. For a fixed point zg € I'¢, let e7 be the outward unit normal vector to I'® at x.
Let B be the ball in R™*! of radius Ry centered at a = (x¢ +r1€;, R10) where R;
satisfies R? = 72 + (e — Ry0)%.

Note that By N P(e) = {z € R""Yz,,1 = €} is an n-ball of radius 71, which is
externally tangent to I'“. By Lemma 3.3 of [LX10], we know that By NX(¢) = () for
any t € [0,7T). Hence, at xg we have
u—oRy

R, ’

s

By an easy computation we also know that,
G
1—02)r24+(140)e
Therefore is proved. In the case that r; = oo, then in the above argument
one can replace r; by any r > 0 and let r — oo. (]

Ry >
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Now consider the approximation problem
1

G(D?*u, Du,u,us) = g F (Alu)) = -0 in Qr,
(4.2) u(z,t) =€ on 0Qr,
w(z,0) =up +€ in  x {0}.
where Afu] = {a;;[u]} is given by (2.16). Let
(4.3) L =G+ G0,0, + G°0s + G,

be the linearized operator of G at u, where
oG oG oG oG
t = — ST — [ d w = =
G ouy’ ¢ Ougy’ G ous’ and & ou

We shall give exact formulas for G¢, G*", G* and G, in section
By Lemma [£.1] we obtain a boundary gradient estimate

(4.4) |Du(x,t)| < C on 0Qr.
Similar to Lemma 5.1 of [LX11], we have

Lemma 4.2. If the initial surface g satisfies f(k[Xo]) < o, then f(k[X(2)]) <
o, Y(x,t) € Q x (0,T).

Proof. By Lemma [3.5] we have

or _ Fiv,;F
(4.5) ot

= (F —o) {Z fsk?2 — VTR 4 (T2 Zfs +wk — 22]“4 .
Now consider the function F = e M (F — o),

or _ FUVF
(4.6) ot

=F [Zfsﬁi AR (V"+1)2Zfs +wF — ZZfs — /\} .

If F achieved its positive maximum at an interior point (zg,%o) € Q, then at this
point we would have

OF

— — FYV,F

ot !

= F [Z for2 =" E 4+ (Y fotwF —2)  fo— )\] > 0.
Choosing A big enough leads to a contradiction. O

Next we shall appeal to Theorem and show that the linearized operator £
(defined in (4.3))) satisfies the maximum principle. Moreover, we can get an uniform
C! estimate for the admissible solution.
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Proposition 4.3. Let u(z,t) € C*Y(Qr) be an admissible solution of equation

[#-3). Suppose the initial surface Lo = {(z,uo(z)), x € Q}, satisfies f(k[So]) < o
and m > 0. Moreover, suppose Haq > 0, then G, > 0, f(k[2(t)]) < o and

wﬁ% on Q.

Proof. From
oG 1 i i
Gy = Du = ottt — "y kUkl’Yl]
:_(F_U) Fii a; 1
(4.7) U U ww

1 1
> —(—2F+o0+ —),
(3 w

and the hypotheses on ¥y we can see that Gu|i=o > 0. Thus when ¢ close to
0, the linearized operator L satisfies the maximum principle. But Lux = 0 (see
Lemma so each derivative u achieves its maximum on 92« , where 0 < t* < T
sufficiently small. In particular, w obtains its maximum on 0. By assumption
we know that w(ug) < %, so we only need to assume that w achieves its maximum
on 9Q x (0,t*).

Let (0,tp) € 02 x (0,t*) be the point where w assumes its maximum. Choose
coordinates (z1, - ,x,) at 0 with x,, the inner normal direction for 9. Then at

(0,%0), we have

U =0, 1 <a<n, up, >0, up, <0,

Zuaa = —un(n— 1)Hoq < 0.

Moreover, by equation (1.10), the hyperbolic mean curvature of graph(u) > F.
Therefore by implying Theorem [3.1] we have

—(c——)< — aat — | <—(n—1)—Hgq <0.
e(a w)_w<;u +w2>_ (n )w o =
Hence L > o on 99 x (0,t*).

Applying Lemmawe know F < o for allt € [0,T). Thus G, > 0 so L satisfies
the maximum principle. Consequently, the estimates must continue to hold as we

increase t* up to 7. (I

5. C? BOUNDARY ESTIMATES

In this section, we establish boundary estimates for second spatial derivatives of
the admissible solutions to the Dirichlet problem (1.18]). According to (2.16]) we
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can rewrite equation ([1.18)) as follows:

1 1 . .
—u — F <(5ij + uv”usrvm)> =0 in Qr,
uw w
(5.1) u(z,t) = ¢ on 09 x [0,T),
u(z,0) =up + € in Q x {0}.

As before we denote

(5.2) G(D*u, Du,u,u;) = iut — F(Alu)).

Theorem 5.1. Suppose f satisfies equation—@. If € is sufficiently small,
(5.3) u|D?u| < C on 9Q x [0,T),

where C' is independent of € and t.

Before we begin our proof note that

0G U e s .
5.4 G = = — L piiqirys
(5.4) oo = ol s
1 .
5.5 Gugy = —F+— ) F*,
59 wo-Frly
oG 1 1 y
5.6 Gu =_— = _(—92F = F ,
(5:6) 5o = (2F+o+ =3 F)
oG 1
5.7 Gti= 2 = —
(5.7) ouy  uw
and similar to [GS04] equation (2.21) (see also [GS08] equation (5.3)) we have
oG
G° =
Ouyg
Ul Ug 2 . wugysd + uyke 2 .
- g SR, (LT ) 2 iy, s
(5.8) wd Tt T ak( 1+ w w2t M
. (F - U) Ug 2 : WUk’ysj + Uj’yks 2 .. .
- PRIy DIl %P e i e’ M D Ity 5 PPN
w? u+w2 +w ik 1+w w2t
Us 2 i wuysd + uiyke 2 . _
=2 ZFUqy | —2L—— 1 ) — Py,
w2’ + w < 1+w w2’
Thus
w2 —1 2 . 2 ..
(5.9) G’ug = R + EF”aikukuj — ﬁF”uiuj
and

o 2 .
5.10 ¢l< 24+ = (S F ilkil)
(5.10) > |7w+wz + Y filsl
Now let £’ denote the partial linearized operator of G' at u:

L'=L—-G, =G+ G"0:0, + G°0;.
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By equation ([5.5] and we get
(5.11)
Lu=Glup + G ug, + Gsus

1 2 2 .
zwuw(F - F+— ZF” (1—)0—1— —QF”aikukuj—EF”uiuj
1 2 2
= w2o—+ ZF”—F—F azkuku]——F uzuj,
hence
1 [ Ut or Uy o[ Us 1
L-=G (——2)+G 8S<——2)+G (——2)+Gu -
u u u
TYs 1
- (Gtut + G ug + G° us) +2Gs’”u u + G-
u
(5.12) :—i a+ ZF” Fjamuku —iF”uu
’ u? 7w J
U 1 I
toger s 4 2 (2+U+ZF”)
u? u U uw
1+ w? F y
= e T ﬁ*uzwz“‘“k“k“j'

Lemma 5.2. Suppose that f satisfies (1.9 and @ Then

(5.13) L (1 — 5) 1 -0 Z fi+ in Q.
Proof. By equation and Proposition
€ €
c(i-g)=£(1-g)+eu(i-3)
(5.14) > /[ (1 . 5) =—eL <u) =—e(L—Gy) %

271_0 Zfz

O

Recall that for symmetric matrix A = A[u] we can uniquely define the symmetric
matrices

1 1 _ 1
Al = {AATYE, 4% = LA+ 4), A= = 241 )

which all commute and satisfy AT A~ = 0. Moreover, F = FJ commutes with |A|,

A* and so all are simultaneously diagonalizable. Write A* = {a -} and define

(5.15) L=CL+ E}W’a;fukaj.
Corollary 5.3. Suppose that f satisfies , , and (@ Then
€ e(1—o0)
. — )= ’
(5.16) L(1 u) >SN

Finally we need to point out that, similar to [CNS84], [GSZ09] and [GS08| we

can prove
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Lemma 5.4. Suppose that f satisfies , , and (@ Then

and
(518) Eul = O7

where 1 < 4,7 < n.

Proof. Without loss of generality we may assume ¢ = 2, j = 1. Let R(6) be the
orthogonal n X n matrix with entries r1; = r9o = cos6, r1o = —r9; = —sin#, and
T = O otherwise. Let y = Rz and v(y,t) = u(x,t). Since rotations in z1,- - ,z,

are hyperbolic isometries, v(y,t) satisfies

(5.19) G(D?v(y,t), Du(y,t),v(y, 1), ve(y 1)) = —o.

where

v(y,t) = u(Ry, 1), vi(y,t) = u (R y. 1),

Du(y,t) = RDu(R"y,t), D*v(y) = R(D*u(R"y,t))R".
Differentiating with respect to € and evaluating at § = 0, we obtain

(5.20)

(5.21) Gy + G gy + G0 + G0 = 0.

Using ([5.20) and the definition of R, a straight forward calculation gives us that
ﬁ(’l)) = ﬁ(l‘gul — .%‘1U2) =0.

The statement L(u;) = 0 follows from letting y; = z; — 6 and y; = z; when

j#i. |

Proof of Theorem[5.1. Consider an arbitrary point on 92, which we may assume

to be the origin of R™, and choose the coordinates so that the positive x,, axis is

the interior normal to OS2 at the origin. There exists a uniform constant r > 0 such
that Q2 N B,.(0) can be represented as a graph

1
tn=5 Y Bagtazs+O('") = pla'), @' = (1, 2n-1).
a,B<n

Since u =€, on 9N x [0,T), i.e., u(a’, p(z’)) = € for Vt € [0,T), we have

(5.22) Ug + unBagrps =0, V(z,t) € {0QN B,(0)} x [0,T),
and
(5.23) uap(0,t) + u,(0,t)pas =0, Vt € [0,T)

where o, 8 < n. As in [CNS84], let T\, = 9o + > 5., Bap(xg0n — 2n03). Using
Proposition and (5.22)), for fixed o < n, 0 < € < r small enough, we have

(5.24) | Tou| + % > ui <C in {QN B(0)} x [0,T),

I<n
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and
1 2 2

(5.25) [ Tou] + 5 > uf < Clal* on {020 B(0)} x [0,7),

I<n
where C' is independent of € and T. Moreover by Lemma [5.4]
(5.26) LT u = 0.

Now define
1 s O o
¢: :l:TaU+ §Zul — ?|x‘ 5
I<n

where C' is chosen to be large enough (and independent of € and T') so that ¢ <0

on (2N B(0)) x [0,T). Since ug € C%() is given, from Taylor’s theorem we can
assume in Q x Bs(0), 6 > € > 0 is small, there exists a, by, b2 and ¢; > 0 so that

ug(z) > €+ a1y, |Taug| < bix, + bolz|? and |ug| < c1]z|.

Therefore, we can choose a constant C; > 0 such that
(5.27) ¢ — O (1 - 5) <0 on {QN B.(0)} x {0},
U

here and in the future, all C and C; (i = 1,2,---) denote constants independent of
€ and t.

Lemma 5.5.

(5.28)  L&< Y GTuu, + % (Z fit Y fl-|m-|) in {QN B(0)} x [0, 7).

I<n
Proof. By Lemma equation (5.17)), and equation (5.18)) we have

Lo =2LTu+ wlu + G upsuy, — %£(|x|2)
(5.29) o €
= G ugsuyy + ?E(—\a:|2).

Since

(5.30)
L(—|z}) = =G 0,0, |x|* — G*0s|x|* — G|z|?

< ‘226‘58 +2> 2,6+ [2°GL
SQ‘ZGSS
<2C€Zf.+2€<g+2(Zf-+Zf'|/€'|)>+C€(Zf'+zf'|ﬁ'|>
- w ! woow ’ o Z o

where we applied lemma 2.1 of [GS08] and Lemma 3.3 of [LX10].
Combining (|5.29)) and (5.30|) we obtain ([5.28)). |

+ 2€|G¥| + €2 G|

Following Ivochkina, Lin and Trudinger [ILT96] we have
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Proposition 5.6. At each point in {Q N B.(0)} x [0,T) there is an index r such
that

(5.31) > G Tuuy < —cou Y fik < % % S fi=Y fikl

I<n iFET i#ET

Proof. Let P be an orthogonal matrix that simultaneously diagonalizes {F*} and

A = {ag;} = {Ly*up~yY}, where 49 = 5;; — EEmE

Note that wa;;v, = vikukl and so we have

sr i~
E G upsuyy = —uwF" a3005pvq0Yp1
I<n

(5.32) = —uw Z FiR3 Poivpt Pyinygl

I<n

~2;2
= —uw E fik; by,

I<n
where B = {b,s} = {P;,7;s} and det(B) = det(BT) = w.
Suppose for some ¢, say ¢ = 1, we have

> bk <67,

I<n

Expanding det B by cofactors along the first column gives
I1<w=detB=0b1C" 4 4b,_11C" 1 + b, det M < ¢10 + co det M,
where cq,co are independent of € and T, and

bl -+ bp_12
M =

bln e bnfln
Therefore, det M > %. Now expanding det M by cofactor along row r > 2 gives
1/2
det M < €3 (Zl<n bl2r) /

1—C19 2
. b7 > .
(5.33) > zr< e )

I<n

, where c3 is independent of € and T. Hence

Choosing 0 < % we conclude that for some r

2c
> G Tusuy < —cou Y | fiR;

I<n iFET

Finally (5.31) follows from equation (2.4). O
Proposition 5.7. Let L be defined by . Then

(5.34) Lo < Cy <1 > fi- G“fbi%)

for a controlled constant Cy independent of € and t.
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Proof. By Lemma [5.5] and Proposition [5.6]
2
Lo =Lp+ —FYa,u,0;¢
w2

sr c 2
(5.35) = ;G UisUir + :(Z fi+ Z filkil) + EF Ta ukgj

Co Co 2 C 2 i
= 21 2u ;f“‘i + ?(Z fit D2 filmal) + 2 agukd;.

Implying the generalized Schwarz inequality,

1
2 I ” L1 upug \ 2
w? | agupd;| < 2 (uFY ¢ig) (uF”aﬂakj w2 )

Co 2 ij
< — > fik; —CGig,
= 8’n/u, K.<0fﬁz7, ¢ ¢]

(5.36)

where we have used Lemma 2.1 of [GS08] to compare uF%“¢;¢; to —G¥ ¢;¢;. More-
over,

(5.37) Zfi|/€¢| = Z fiki — Z Jiki =F +2 Z filkal-

ki >0 k; <0 ki <0
Hence we get equation ([5.34) with Cs independent of € and t. O

Let h = (eCW — 1) —A (1 — 5) , with C5 defined as before and A to be deter-
mined later. From equation (5.27) we know that when A is chosen large enough

(5.38) h <0 on 9{(QN B.(0)) x [0,T)}.
Moreover, by Proposition [5.7] and Corollary [5.3] we get
(5.39) Lh <0 in (20 B.(0)) x [0,T).

Therefore by the maximum principle we conclude that h < 0in (2N B(0)) x [0,T).
Since h(0,t) = 0, we have that h,(0,t) <0 for all ¢t € [0,T") which gives

A
(5.40) [tan(0,t)| < =—wu,(0,t) forall t € [0,T).
026

Finally, |tunn(0,t)| can be estimated as in [LX11] section 6 using the hypothesis
. For completeness we include the argument here. For any ¢ € [0,T"), we may
assume [uq3(0,t)] to be diagonal. Note also that u4(0,¢) = 0 for @ < n. We have
at (z,t) = (0,1)

1+uu11 O “ . %
0 1+uuQ2 e U'U.%

A =

UUn1 UUn2 . 1 + uurzzn
w
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By Lemma 1.2 in [CNS85], if €u,,(0) is very large, the eigenvalues Ay, -+ , A\, of
Alu] are given by

Ao %(1 + €uaa(0)) +o(1), a <n

A = % (1 +0 <eun1,(0)>) '

If €u,, > R where R is a uniform constant, then by (1.8)), (1.9) and Proposition
we have

(5.41)

1 €0
> — > — v
o2 —F(wAlu])(0) > (7 - C¢) (1+ 2) >0
which is a contradiction. Therefore
R
[Unn (0)] < "

and the proof is completed. ([l

6. C? GLOBAL ESTIMATES

In this section we will prove a maximum principle for the largest hyperbolic
principal curvature Kmax(, t) of solutions of equation .

As before, we denote the metric in H" ™! by g;; and denote the hyperbolic second
fundamental form by h;;. Now consider function

Hmax(xat)
6.1 = max —mexihl)
( ) 14 (w,t)EﬁT pyn+l _ a

where infg_ vt > .

Theorem 6.1. Suppose f satisfies —@ and o € (0,1) satisfies o > oy,

where oq is the unique zero in (0,1) of
4 1 1 3
6.2 =-a——a*>— —(a®*+3)2.
(62) #la) = 50—y’ — 5o (a* +3)
Let u € C*2(Q x [0,T)) be an admissible solution of such that v" 1 (z,t) =
% > o, for all (x,t) € Qr. Then at an interior mazimum of ¢, there is a constant

C (independent of € and t), such that
(6.3) Fmax < C.

Numerical calculations show 0.14596 < oy < 0.14597.

We begin the proof of Theorem [6.1] which is long and computational.

Assume ¢ achieves its maximum at an interior point (zg,tp). We may rewrite
Y(to) locally near Xo = (zq,u(wo,tp)) as a radial graph X = e"#tz, (z,t) €
St x (0,T), such that v(Xy) = 2o, and we may also choose the local coordinates

around zo € S" such that at (zo, o)

gij = 5ij and
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By a standard calculation, we also know that v(z,t) satisfies
v =yw(f — o).

Moreover, we can also assume }Nlij is diagnalized at (zo, to). At last, since dilation is
an isometry for radial graph in hyperbolic space, without loss of generality we may
assume v(zg, tg) = 0 Therefore at (zg, ty) we have

G 8 . -

(64) gij = % = ﬁ and glj — u2§1] — y25ija
1.yt hij 6

6.5 hii = —hi; + ——§;; = —L + —L.

(6.5) ij u ij T ) Gij Y + y

Differentiating (2.18)) with respect to 6% we get

0gi;  0e**(0ij + vivy)]

ook oo*
= 2€2U’Uk(0ij + ’Uﬂ}j) + 621} <

(6.6) oo,

o0f*

+ Uikvj + ’Uﬂ)jk> = 0

Since v(Xg) = 2o, we conclude that at (zo, to)

80'ij _
00k
which implies
k _
Ik = 0.
Thus
(6.7) Vv =vij = Vijv,

where @ij denotes the covariant differentiations in the metric § with respect to the
local coordinates on X (tp).
Recall that by Lemma [3.2] we have

9gij 5
atj = —2(F — a)uhij.
On the other hand
8.@7/] = 2621}7]15(0'7;‘ + v;v ) + 621) (0’1 + ’UZ'U + ’Ui’l') )
(68) at J J J J J

= 2§iij(F — 0') + e2v (UZJ + f)ﬂ)j + ’Uﬂ)j) .
Therefore at (zo, to)

(6.9) Gij = —2y(F — 0)hi; — 2y(F — 0)6y;.
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Combining equation and we get

(6.10)
Ohij
ot

= hijy(F — 0) + Vi;lyw(F — 0)] + 2(F — 0)yhi; + 2y(F — 0)di;

= 3hiy(F — o) + Vi [yw(F — 0)] + 2y(F — )3y

= 3hi;y(F — o) + {y Vi, F 4+ y(F — o)vv

— (F —o)ydij + yiFj +y; Fi} + 2y(F — 0)d;;

= 3hijy(F — o) + yVi, F + y(F — o)ouvy + yiFy + y; Fs + y(F — 0)d3;.
We can always assume at (zg,to) Kmax = g''h11, thus we only need to compute

hi1 at this point. From now on, all calculations are done at (zg, o) if no additional

explanations.

Lemma 6.2. At (zg,t),
O pt = PRIt = 3(F — o)t + y? FOR R by
(6.11) Ot o
—(F—O’)—‘r (Iilzfiﬁlz-i-HlZfi —F—K%F) .

Proof. Differentiating equation (6.5 with respect to t we get

. 1= hii . wntl_ ptl pntl
(6.12) hij = —hij = S+ —=Gij + ——Gij — 2= G
Since
g aevy v 2
(613) U = N =e yyt:y(F_a-)
and
prtt - 9 [y=Vv-Vly
ot w
14
(6.14) V(P - )] - Yy
=—(F-0o)(1-y*)—yV'F-VYy,
we obtain
) 17 -
hii = v 3hiy(F — o) + yVi F +y(F — o)vnvn + 25 F1 + y(F — o)
; (F—o)(1-y*) yV'F-V'y

—hll(F—O')— y2 — y2

(615) —2(F—0’)h11 —2(F—O’)
2 F—o 1
=V F + (F - o)y + leFl _ " ) _ §V’F -V'y
~ 2 F — 1
=V F+ (F=0)(hi1+1)°+ =y Fy — ( o) - ~V'F-Vy.
Yy y? Yy

Here we used iLZ—j = v;; — 0i; at (2o, o).
By equation (2.1)), (3.3)) and (6.13]) at the point (zg,to) we get
(6.16) 9ij = —2(F — 0)hi;.
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On the other hand 9 9
ik k
e (9%gi;) = &@- =0,
hence

(6.17) g = 24 (F — o)y,

Finally we have

ohl 0 , .
aftl = o (9" hx1) = " har + g i
=2y*(F — o)hiy + y*hn
6.18 . 2
(619 =2 (F —o)hi), +y° [ ’11F+(F—o)(h11+1)2+§y1F1
F— 1
_( 20-)_v/F.V/y}.
Y Yy
By (2.6) at (zo,to) we get
- 1
(6.19) Vijf=Vif+ " (yifj +yifi — Zylfl5ij) .
Therefore we can rewrite equation (6.18)) as
oh}
(6.20) aTl =3(F — o)x} +y°V F — (F —0).
Moreover

ViuF = Fiihﬁ;n + Fij’klhg;lhé;l
(6.21) = F'¥V11 (9% hy) + Fij’klhgnhig
= y2FiiV11hii + Fij’klhg;lhgc;l.
Thus

oh} y Rl
(6.22) 8—; =3(F — 0)k2 + y*FV 11 hii + yzF”’kth;Ihé;l — (F — o).

Next let’s recall the following well-known fundamental equations for a hypersur-

face ¥ in H"H! :

Coddazzi equation: V;hj, = Vjhy; = Vihij,

Gauss equation: R;jr = (hichji — hahjk) — (9951 — 9igjk)s

Ricci equation: Vlvkhij — Vkvlhij = hz’pgquqjkl + hjpgquqikl~
So we have

Vithi — Vighiy = ViVihy; — ViVihy
(6.23) = h1pg"? Rgii1 + hipg"  Rg14i1
= k1R + KiRia

and

1 1
(6.24) Riiin = —hahi + s Riri1 = hishi — I
Substituting equation (6.24]) into (6.23) and combining with equation (6.22]) we
obtain (6.11)). O
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Lemma 6.3. At (z,to),
o PE = (F = o)) (1) Y flri )
+ yz filki = y?) = 23/2 fiyav
Proof. By differentiating v+ we get

el _ <yV'v-V'y>
K2

w )

1

(6.26) _Yi—vwiy—uy  y—Vv-Vy

w w?

(6.25)

=y — vy = —hiYi

and
ntl _ Yig — Uiy — VisYiy — VY — Viliig
v = "
y—V’v~V’yw w <y—V’v~V’y)

- 2 Wi T W 2
(6.27) w w ;

= —Y0sj — VY1 + YUy + Y0 — Yvivy

= _ylﬁlﬁij - yillii’/lJW
Then

~ 1 1
V"t =Vt 4 " (yiu;-”rl + oyt — " Zylufﬂéij

(6.28)

- - - 1 1
= —ylvlhij — yhlihl]‘ + g (yiy;_l+1 + ijZ‘nJrl) _ ; ZylVInJrléij'
Moreover, differentiating F' with respect to 7y,

ViF = F9 (h]) = F (ub +v"+55)
(6.29) ot . !
= FY {ylh,’j + yvlhij + l/ln+1§ij} .
Combining equations (6.14]), (6.28) and (6.29)) we have

Pl 2 Ryt
=—(F-o)(1-y") —y(l - yg)Zfz (IZ - 1) - yzzFiiyl@liLii - yzl/lnﬂyl Zf1
+ y2 ZF”ylﬁliLii + y3 ZF”iLi — 2yZF”yiul-”+1 + yz yl”Hyl Z fi
= —(F=o)(1—¢) = (1=))D_filki—y9) +y D> filki—9)* =2y > fayr} ™
O

From the assumption that ¢ achieves its maximum at (2, tp), we have

9% _

ot y2F“v”S0 Z 0 at (Z07t0)7
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therefore,
(6.30)
0 S h% - y2F V”h} - I/"Tl—a (V 1 y2F ViiV +1)
=3(F — o)x] + yQFij’klhgglhé.l —0)+ k1 Z fik? + K1 Zfl — KIF
K
- {—(F—o)(l—y2>—< PIF+y(1 =) Y ity Y fin?
“2PF 4y Y i 2 fi
1 — 2 o
= [3@ 1+ M] (F — o) + y>F*pd Bl
y—a o

2
- (S f? Z') g2y Y]
y_a< szzWL fz +|: ﬂlJr y—a
2UK
+ y_lg T

y—a
Here we have used Lemma and Lemma According to Andrews [A94] and
Gerhardt [G96] (see also [GSZ09] equation (5.38))

pukpi gt < NN (hi_ ) <9 fi— L
;1 k,l—;ni_ﬁj ;1 Zﬁz_ﬁl 451

and
K
h%;l =V (glkhki) = y2h1i;1 = y2h11;i = Y _lal/?ﬂa
we get
o ) ;
(6.31) FUMpl bl < “1 Z/{ —L ()
7 1
Therefore
(6.32)
2y K3 fz fl 2
0 < 3 2 1 n+1
< [ -1 D o e )

am (Z fik? + Zf,) { 1;1+ay )] F + jzﬁi; > fyap
Followmg the idea of [GSZ09] and [GS08] let

I'={i:ri—y< -0k},

J={i: =0k <ri—y<0, f; <O 'f1},

L={i:—0r <ki—y<O0, fi >0 fi},

where 6 € (0, 1) is to be determined later. Then we have

—1 Z(Hz — 2 < Ok Zfi(’% —

—a —a
Yy el Y el

6;‘{1 e
Zfzyz z_VH_l)v

’LGI

(6.33)

| A
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where we have used Y. y? = 1 — ¢/? (see [GSZ09] equation (5.19)). Now providing
fk1a > 2 and applying equation (6.26)) we get

K1a 2K
e Do il = S S fay s — o)

(6.34) e 2% el
1 n
T Ty = a Zfzyzl/l +1«
y iel
(6.35) DL = k) <0k Y 07 iyl < fuma,
icJ ieJ

provided ax; > 2,

(6.36) —am

2yK
fllif + yy_ ; Z fiyil/;l+1 < 0.

icJ

—a

Finally, when i € L,

(6.37)
;yﬁl Zfl biv. nH 2y Hl fozl—m :LH)Q
<y [Zfzyz —u““)+%21+9f1y1< —v“+1>2]
i€l

— K1 ].—9
= _alEZLsz{ i~ Y (y—a)(l—l—G)(ﬂiy)z]
B 2m — 0 —a)(1+6)7]° (y—a)(l+96)
- Zf{ g [+ g - }
g’“( Zfz

i€l
Combining (|6.32|), (6.34), (6.36]), and (6.37)) we obtain

0< [(2/@% —-2)(y—a) —|—2/¢1] (F—o0)— [(/@% +1)(y —a) — k(1 +y2)] o

(6.38) 1= —-y*)(y—a)
+[ 21 -0) —a} mg;fi,

where the coefficient of —k1 Zie . fiis

(6.39) doly) = a—

and we want ¢g(y) > 0 on (a, 1). Since

(6.40)

For a € (0,1) it is easy to check that ¢'(a) > 0, ¢(0) < 0, ¢(1) > 0. Let g be
the unique zero of ¢(a) in (0, 1). Numerical calculation show that 0.14596 < oy <
0.14597.
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Now following [GS0§], assume that 2¢p := 0 — g > 0 and choose a = gg + €,
then ¢y(y) > 0 on (a,1) if & > 0 is chosen sufficiently small. By Proposition
y—a>o—a > eat (z,t). So, by (6.38) (assuming k1 > 2) we obtain ex] < 2k;.

Hence
1 1 1 1
k1 <2maxq —,— 0 =4max , .
ad’ ey O(c+09) 0 —o0g
So
t 1 1
max ﬁmax<m(zo’0)<8ma><{ 0 2},
(z,t)€Qr €0 0(c2 —03)’ (o0 — 00)

completing the proof of Theorem

7. CONVERGENCE TO A STATIONARY SOLUTION

Let us go back to our original equation (1.12)), which is a scalar parabolic
differential equation defined on the cylinder Qr = Q x [0,7) with initial value
u(0) = ug € C*°(R). In view of the a priori estimates, which we have estimated in

the preceding sections, we know that

1
(7.1) V1+|Du? < .
and when o > ¢ (0.14596 < 0¢ < 0.14597) there is a constant C' independent of e
and ¢ such that

(7.2) u|D?u| < C.
Thus we have
(7.3) F is uniformly elliptic in u.

Moreover, since F is concave, we have uniform C?7%(Q) estimates for u?(t), Vt > 0.
Therefore, the flow exists for all t > 0.
By integrating equation (1.12)) with respect to t, we get

¢
(7.4) u(z,t) —u(x,0) = / (F — o)uw
0
which implies

(7.5)

/ (F—U)uw’<oo V€ Q.
0

Hence, for any x € Q there is a sequence ¢ — 0o such that (F — o)u(xz) — 0.
On the other hand, due to our assumptions on our initial surface, u(z,-) is

monotone decreasing and therefore
(7.6) tlgrolo u(z,t) = a(x)

exists, and is of class C*°(f2). So @(x) is a stationary solution of our problem.
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