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We find a class of special microstructures consisting of a periodic array of inclusions, with the
special property that constant magnetization (or eigenstrain) of the inclusion implies constant
magnetic field (or strain) in the inclusion. The resulting inclusions, which we term E-inclusions,
have the same property in a finite periodic domain as ellipsoids have in infinite space. The E-
inclusions are found by mapping the magnetostatic or elasticity equations to a constrained
minimization problem known as a free-boundary obstacle problem. By solving this minimiza-
tion problem, we can construct families of E-inclusions with any prescribed volume fraction
between zero and one. In two dimensions, our results coincide with the microstructures first
introduced by Vigdergauz,[1,2] while in three dimensions, we introduce a numerical method to
calculate E-inclusions. E-inclusions extend the important role of ellipsoids in calculations
concerning phase transformations and composite materials.
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I. INTRODUCTION

ELLIPSOIDS are widely used in micromagnetics and
elasticity because they have the property that, given a
uniformly magnetized/prestrained ellipsoid in three
dimensions, the induced magnetic/strain field is uniform
inside the ellipsoid. This property was identified by
Poisson in 1826 in the context of partial differential
equations,[3] by Maxwell in 1873 for magnetics,[4] and by
Eshelby in 1957 for inclusions in linear elasticity.[5,6]

Because the induced field in ellipsoids is uniform, they
play a central role in micromagnetics,[7–10] the theory of
composite materials,[11,12] and micromechanics and
phase transformation problems.[6,13]

Motivated by the usefulness of ellipsoidal regions, we
consider their periodic generalization, which we call
E-inclusions. The terminology ‘‘E-inclusions’’ refers to
three associations: (1) they can be parameterized by
elliptic functions in two dimensions (Eq. [12]) and
probably can also be parameterized by elliptic functions
in three dimensions; (2) they are a generalization of
ellipsoids, and, conversely, ellipsoids can be regarded as
the limit of these special E-inclusions as the volume
fraction goes to zero; and (3) this study was motivated
by the Eshelby inclusion problem. The E-inclusions are
characterized by a Bravais lattice, which determines
their periodic arrangement in space, and by a semipos-
itive definite matrix, which determines their shape.

We prove the existence of E-inclusions by mapping the
micromagnetics/elasticity problem to a constrained

minimization problem known as a free-boundary obsta-
cle problem. That is, we extremize a particular energy
functional, where allowable functions are either above or
touching a given function. This given function is subse-
quently referred to as the obstacle. With this formula-
tion, we can show that for a piecewise quadratic obstacle,
regions where the minimizer touches the obstacle define
the E-inclusions. The existence of E-inclusions follows
from the existence of minimizers for this variational
inequality, which is proven by adapting existence
theorems of Friedman[14] and Caffarelli.[15]

After we prove the existence of E-inclusions, we give
examples in both two and three dimensions. In fact, the
existence of E-inclusions has already been proven in the
two-dimensional (2-D) case by Vigdergauz;[1,2] this is
now referred to as the Vigdergauz construction.
Grabovsky and Kohn[17] subsequently found an analytic
solution of these inclusions and proved that they are in
fact energy-minimizing structures for two-phase com-
posites. In three dimensions, we have developed a
numerical method to calculate E-inclusions by using
generalized ellipsoids. We have as yet been unable to
find an analytical solution for three-dimensional (3-D)
E-inclusions, though we suspect that such a solution
would involve elliptic functions.
The article is organized as follows. In Section II, we

sketch the mathematical arguments leading to the
existence of E-inclusions. We present the results in
terms of the micromagnetics problem, which involves
finding a scalar field (the magnetic potential). The
corresponding elasticity problem involves a vector field
(the displacement) and is more complicated. We can
show that our results for the magnetics case apply to the
isotropic elasticity case and we expect that they apply
more generally. We give results without formal proofs
(these can be found in Reference 16). In section III, we
show examples of E-inclusions for different cases.
Finally, in Section IV, we discuss our results and
propose some applications.
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II. MATHEMATICAL ANALYSIS

Consider a Bravais lattice L described by lattice
vectors e1; . . . ; e2 2 Rn (n = 2, 3). Given a particular
unit cell Y for the lattice, we are interested in calculating
the magnetic field induced by a region W contained in Y
with prescribed magnetization m 2 Rn. This field satis-
fies the Maxwell’s equation:

div [rumðyÞ þmvX(y)]=0 in Y ½1�

where um is the magnetic potential and vW is the
characteristic function for W (so vW(y) = 1 for y2W
and zero otherwise). For completeness, we note that the
corresponding equation for elasticity can be written as

div [Lru + PvX� ¼ 0 in Y ½2�

where u is the (vector) displacement field, L is the elastic
stiffness tensor, and P is the eigenstress. Note that
appropriate boundary conditions on the boundary of Y
(e.g., periodic boundary conditions) are needed in order
to solve Eqs. [1] and [2].

In terms of Eqs. [1] and [2], the special property of
ellipsoids is that for Y ¼ Rn, uniform magnetization or
eigenstress on ellipsoidal regions W induce uniform
magnetic field or strain field in W. Roughly speaking,
then, an E-inclusion is a region W in a unit cell Y with
the same property. More formally, we state that the
region W is a periodic E-inclusion associated with lattice
L if the overdetermined problem

div[rumðyÞ þmvX(y)]=0
rumðyÞ ¼ const:

periodic boundary conditions

8
<

:

in Y
in X
on @Y

½3�

has a solution for all m 2 Rn

In order to make progress, it is convenient to pose the
governing problem for E-inclusions in its simplest
mathematical form:

Du ¼ h� vX

rru ¼ �ð1� hÞQ
periodic boundary conditions

8
<

:

in Y
in X
on @Y

½4�

where Q is a constant semipositive definite n· n matrix
with trace (Q) = 1, and h = ŒIŒ/ ŒYŒ is the volume
fraction of region W in unit cell Y. The matrix Q sets the
shape of theE-inclusion.The equivalence ofEqs. [3] and [4]
can be seen by writing Eq. [4] in its weak or integral form:

Z

Y

½ruðyÞ � rvðyÞ þ ðh� vXÞvðyÞ�dy ¼ 0 ½5�

for all smooth functions v that are periodic in Y. Noting
that for any m 2 Rn; m � rv is a smooth periodic
function in Y, we can replace v by –mÆ�v and integrate
by parts to get

Z

Y

ðrum þ vXm - hm) . rvdy

=

Z

Y

ðrum þ vXm) . rvdy=0

½6�

wherewe set um = m Æ�u. Equation [6] is exactly theweak
or integral formulation of the first Eq. [3]; the second
equation is clear from the definition of um. Hence, from
the uniqueness of the solution of Eq. [1], we conclude that
um = m Æ �u. We also remark that if we take v = um in
Eq. [5], we can conclude that Q is semi-positive-definite,
while the fact that Q has a unit trace is easily seen by
taking the trace of the second equation in problem [4].

A. Periodic Free-Boundary Obstacle Problem

To prove the existence of E-inclusions, we turn to a
constrained minimization problem, also known as a
free-boundary obstacle problem or variational inequality
problem (References 14, 15, and 18):

Gf ðuf Þ � min
v2Kper

(

Gf ðvÞ �
Z

Y

1

2
jrvj2 þ f v

� �

dy

)

½7�

where the constant f>0, and the admissible set Kper

consists of periodic integrable functions (more precisely,
periodic W1,2 (Y) functions) v with v ‡ /p. The obstacle
/p is a periodic continuous function; admissible func-
tions v must be either on or above this obstacle.
The minimizer uf is called the solution of the

minimization problem [7]. The existence and uniqueness
of the solution of problem [7] has been well established
(Reference 14). Further, one can show that if the
solution uf is smooth enough, then it necessarily satisfies
the Euler–Lagrange conditions:

� Duþ f � 0; u � /p, and

(� Du + f ) (u� /pÞ ¼ 0 on Rn:
½8�

Equation [8] can be used to show the equivalence
between the minimization problem [7] and the E-inclu-
sion problem [4]. Define a coincident or touching set Wf

as the set in Y where the solution uf (y) = up(y);
similarly define the noncoincident set Nf as the set where
uf (y)>/p (y). It is straightforward to extend these sets
periodically. Then, the third Euler–Lagrange equa-
tion implies that Duf = f in N f and uf = /p in W f.
Alternatively,
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Duf ¼ f vNf þ vXf D/p
rruf ðxÞ ¼ rr/pðxÞ
periodic boundary conditions

in Y
in Xf

on @Y

8
<

:
½9�

where vNf is the characteristic function of the
noncoincident set. If the obstacle /p(x) is chosen to
be a periodic continuous function that coincides with
a quadratic polynomial on the unit cell Y, then the
solution of problem [9] also solves the overdeter-
mined problem [4] within a multiplicative constant.
Therefore, finding a solution of the overdetermined
problem [3] or [4] is equivalent to solving the
minimization problem [7] for a piecewise quadratic
obstacle.

We now give the main mathematical result of the
paper; a full proof is given in Reference 16.

Theorem 1: Let uf be the solution of problem [7] with
respect to the obstacle:

/pðx)=max � 1

2
ðx + r)�Q(x + r) : r 2 L

� �

where Q is a semi-positive-definite matrix and trace
(Q) = 1, and let Wf be the coincident set of all x in Y
such that uf (x) = /p(x). For any f 2 (0, ¥), then

(1) Wf is an E-inclusion,
(2) Xf � Rn is a convex region and its boundary is an

analytic surface, and
(3) the volume fraction h = | Wf |/|Y| of the E-inclu-

sion is given by h = f/(1 + f).

III. EXAMPLES OF E-INCLUSIONS

We now consider some examples of E-inclusions in
both two and three dimensions. From the discussion in
Section II, the choice of parameters we have to change
the shape of the E-inclusions includes the lattice L or the
unit cell Y, the matrix Q specifying the quadratic
obstacle, and the volume fraction h of the inclusion
phase.

A. Two-Dimensions: Vigdergauz Microstructure

The existence of E-inclusions for rectangular cells in
two dimensions was first proved by Vigdergauz.[1,2]

Grabovsky and Kohn[17] found a corresponding analytic
solution for these ‘‘Vigdergauz microstructures.’’ Here,
we present a formula to calculate E-inclusions for
rectangular lattices (References 17 and 16 provide
details).

Consider a rectangular lattice L with unit cell
[–cx,cx] · [–cy, cy], and choose the half lengths ax and
ay of the E-inclusion projected on the x-axis and y-axis,
respectively. We explicitly parameterize an E-inclusion
by using the incomplete elliptic integral of the first
kind:

F ½x;m� ¼
Zx

0

1

ð1� t2Þð1� m2t2Þdt

and the complete elliptic integral of the first kind,
K [m] = F [1, m] (Reference 20). We first solve the
equations

cx ¼ ax þ ayK½1� my �=K½my �
cy ¼ axK½1� mx�=K½mx� þ ay

�

½10�

to find values mx and my between zero and one. Using
these values, we compute a curve of dummy variables x¢
and y¢ satisfying

ð1� ðx0Þ2Þð1� ðy0Þ2Þ ¼ M ½11�

where M = (1 – mx)(1 – my)/(mxmy) is between zero and
one, and we choose the branch of the curve with
x0; y0 2 ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M
p

�. The curve (x, y) describing
the boundary of an E-inclusion is then computed from
the curve (x¢, y¢) through the mapping

x ¼ ax
K½mx� F ½x

0;mx�
y ¼ ay

K½my � F ½y
0;my �

(

½12�

With this representation, the matrix Q is

Q=
1

1� h
1� ax=cx 0

0 1� ay=cy

� �

½13�

where the volume fraction

h ¼ ax=cx þ ay=cy � 1 ½14�

We obtain different E-inclusions by adjusting parame-
ters ax, ay, cx, and cy. In the following, we define a
relative aspect ratio,

r ¼ 1� ay=cy

1� ax=cx
½15�

and we take cy = 1 and use cx, r, and h as the control
variables. Figure 1 shows E-inclusions, plotted for
different values of cx with r = 1 and h = 0.5. Because
of symmetry, we show a quarter of the E-inclusion.
From left to right, the regions bounded by the curves
correspond to cx = 0.5, 0.8, 1, 1.25, and 2. Figure 2
shows E-inclusions plotted for different values of r with
h = 0.5 and cx = 1, i.e., a square unit cell. Going from
the top of the figure to the bottom, the shapes have
values r = 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, and 5. Note that
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the shapes are all convex with smooth boundaries,
consistent with Theorem 1.

Figure 3 shows E-inclusions for different volume
fractions, with cx = 1 and r = 1. The volume fractions
increase from inward to outward and are h = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. The ‘‘+’’ denotes
numerical solutions that will be presented in Section B.
As volume fraction increases, the E-inclusion moves
from a circular shape to a squarish shape, consistent
with a square unit cell and r = 1. Conversely, one can
show that as the volume fraction h tends to zero, the
parameterization [12] of the E-inclusion is precisely that
of an ellipse.

B. Three Dimensions: a Numerical Solution

In three dimensions, an analytic solution for E-inclu-
sions is not yet available. Therefore, we have developed
numerical methods to compute E-inclusions. Moti-
vated by the 2-D results, we restrict our attention to
E-inclusions with the shape of a generalized ellipsoid:

XðlÞ � x :
xl

al
x
þ yl

al
y
þ zl

al
z
� 1

( )

½16�

where l ‡ 2 because the shape must be convex. Suppose
that the unit cell Y, values ax, ay, and az, and the volume
fraction h are given. (Note that setting the ai values is
equivalent to choosing Q, e.g., Eq. [13].) Because ��u is
uniform inside an E-inclusion (Eq. [4]), we seek the
optimal l = l* to minimize the standard deviation of the
second derivatives of the periodic solution of
Du1(y) = h – vW(l). That is, we minimize the error s(l)
associated with deviation from uniformity:

sðl�Þ¼min
l�2

sðlÞ� �
Z

XðlÞ

rrulðxÞ� �
Z

XðlÞ

rrulðyÞdy

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

dx

8
><

>:

9
>=

>;

½17�
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E−inclusions in different periodic boxes
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Fig. 1—E-inclusions are shown for five different unit cells. The rela-
tive aspect ratio r = 1 and volume fraction h = 0.5. The height of
these five quarter-unit cells is fixed at 1 and their widths are 0.5, 0.8,
1, 1.25, and 2. The regions bounded by the curves are the quarter-E-
inclusions.
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E−inclusions with different aspect ratios

Fig. 2—E-inclusions are shown for five different relative aspect ratios
r. The volume fraction h = 0.5 and the quarter-unit cell is a unit
square. From top to bottom, the regions bounded by the curves are
quarter-E-inclusions with r = 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, and 5.
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E−inclusions with different volume fractions

Fig. 3—E-inclusions are shown for increasing volume fractions. The
relative aspect ratio r = 1 and the quarter-unit cell is a unit square.
From inward to outward, the regions bounded by the curves are
quarter E-inclusions with h = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.
The ‘‘+’’ symbols are numerical solutions based on generalized ellip-
ses.
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Note that when l = 2, W(l) is an ellipsoid. In contrast,
when l becomes large, W(l) approaches a rectangle.
Practically speaking, increasing l beyond about 15 has
little effect on either W(l) or s(l), and so, for the actual
computation if l*>15, we stop the computation and
take optimal l* as +¥.

We have carried out numerical computations in both
two and three dimensions. We consider square or cubic
unit cells and vary volume fraction of the inclusion.
Numerical results show that the optimal shapes W(l*)
are very close to E-inclusions in the sense that s(l*) is
very close to 0 (order 10)3). Table I shows values for

the optimal l*as a function of volume fraction h in
both two and three dimensions. Note that as h fi 0,
l* fi 2, as expected. Also note that the ‘‘+’’ marks in
Figure 3 are calculated according to the optimal l*
listed in the second row of the table. There is excellent
agreement between the exact shapes and our calculated
shapes.
Calculated E-inclusions in three dimensions are

shown in Figure 4. In all cases, we consider a cubic
unit cell and we set ax = ay = az, so Q is proportional
to the identity matrix. The volume fraction ranges from
h = 0.1 in Figure 4(a) to h = 0.7 in Figure 4(d). As in

Table I. Optimal Value of l to Minimize Deviation from Uniformity is Shown as a Function of h in Both Two and Three

Dimensions

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n = 2 2.00 2.14 2.46 2.83 3.48 4.59 6.50 10.56 l* fi ¥
N = 3 2.14 2.64 3.03 3.73 4.92 6.75 9.50 l* fi ¥ l* fi ¥

Fig. 4—A series of 3-D E-inclusions are shown for cubic symmetry and volume fractions: (a) 0.1, (b) 0.3, (c) 0.5, and (d) 0.7.
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the 2-D case, the E-inclusion goes from being roughly
spherical at low volume fractions to cuboidal at high
volume fractions. Changing either the lattice or the ratio
of the ai will lead to roughly ellipsoidal shapes at low
volume fractions and rectangular parallelepiped-like
shapes at higher volume fractions.

IV. DISCUSSION

We have presented a calculation that generalizes to a
periodic setting the special properties that ellipsoids
possess in three dimensions. In magnetics, ellipsoids
have the property that a uniformly magnetized ellipsoid
induces a uniform magnetic field inside the ellipsoid. In
elasticity, ellipsoids have the property that a uniform
eigenstrain induces a uniform strain inside the ellipsoid.
We have shown that shapes—E-inclusions—with these
properties exist in a periodic setting and we have
presented calculations of such shapes. Because ellipsoi-
dal shapes are commonly used to solve micromagnetics
and elasticity problems involving composite properties
in the low volume fraction limit, we expect that
E-inclusions may play a similar role at higher volume
fractions.

Our analysis is based on the micromagnetics problem
[3] or the equivalent elliptic problem [4]. It is straight-
forward to generalize the analysis to the elliptic equation

div Aru(x)½ � ¼ h� vX in Y

by a linear transformation, where A is a positive defi-
nite n · n matrix. We can also extend the analysis to
the elasticity case by considering the problem

div Lru(x)þ PvX(x)½ � ¼ 0 in Y

ru(x)=� ð1� hÞRP in X

(

½18�

where u is the unknown vector displacement, L is the
elastic stiffness tensor, P is the eigenstress, and R is a
constant tensor analogous to the Eshelby tensor.[6] We
can prove that E-inclusions exist if L is the fourth-
rank identity tensor, Lijkl = dijdkl. We can also show
that E-inclusions exist in the important case where P is
proportional to the identity (a dilatational eigenstress)
and L is the isotropic linear elastic tensor, Lijkl =
l(dikdjl + dildjk) + kdijdkl, with Lamé moduli l, k. We
believe, based on both our analysis and numerical
results, that E-inclusions also exist in more general
cases, and we are working on a formal proof of this
conjecture.

As mentioned previously, E-inclusions may play an
important role in computing properties of multiphase
magnetic and elastic materials. For example, one can
adapt Eshelby’s equivalent inclusion argument[5,6,19] to
the elasticity problem [18] to construct solutions for
inhomogeneous inclusion problems;[10,16] this solution
can be used to compute bounds on effective elastic
constants for composite materials.[11,12] In fact, we can
show that E-inclusions can be used to characterize
the set of all possible conductivity tensors of a compos-
ite, called the Gh closure of two-phase composite

systems.[21,16] Finally, E-inclusions can be shown to be
the energy minimizing microstructure of two-phase
composites.[16] This property could have applications
in magnetics, e.g., to minimize loss in magnetic storage
media. E-inclusions would also form a natural class of
shapes to categorize equilibrium microstructures that
arise in diffusional phase transformations, such as those
that arise in coherent c - c¢ nickel-based superal-
loys.[22,23,24] In this case, one must consider the surface
energy of the inclusion-matrix interfaces as well as the
elastic energy of the microstructure.
We have explored E-inclusions by direct analysis of

the underlying partial differential equations. We are also
working on using Fourier methods to study E-inclu-
sions. Fourier methods are widely used in microme-
chanics, and they work especially well in the dilute case
where E-inclusions are ellipsoids.[6,25] In particular, we
hope that Fourier methods give some insight into
constructing an analytical solution for the shapes of
3-D E-inclusions. On the other hand, we note that our
method has the advantages that one can consider
multiple inclusions in the unit cell Y by introducing
multiple obstacles in Y. We can also extend our method
to find special shapes that give any induced field in the
shape, simply by changing the second condition of the
overdetermined problem [4]. This flexibility may lead to
many new and exciting applications beyond those
discussed previously.
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