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Abstract

In this paper, we find a class of special inclusions that have the same prop-
erty with respect to second order linear partial differential equations as holds
for ellipsoids. That is, in the simplest case and in physical terms, constant
magnetization of the inclusion implies constant magnetic field on the inclu-
sion. The special inclusions are found as solutions of a simple variational
inequality. This variational inequality allows us to prescribe the connectivity
and periodicity properties of the inclusions. For example we find periodic
arrays of inclusions in two and three dimensions for which constant magne-
tization of the inclusions implies constant magnetic field on the inclusions.
The volume fraction of the inclusions can be any number between zero and
one. We find such inclusions with any finite number of components and com-
ponents that are multiply connected. These special inclusions enjoy many
useful properties with respect to homogenization and energy minimization.
For example, we use them to give new results on a) the effective properties
of two-phase composites and b) optimal bounds and optimal structures for
two-phase composites.
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1. Introduction

Poisson [47] found a remarkable property of ellipsoids: given a uni-
formly magnetized ellipsoid, the induced magnetic field is uniform inside the
ellipsoid. Explicit expressions for this field were obtained by Maxwell [41].
Eshelby [13, 12] exploited a similar result in the linear theory of elasticity.
Eshelby’s solution asserts that a uniform eigenstrain on an ellipsoidal subre-
gion in an infinite elastic medium induces uniform stress inside the ellipsoid
(see also, Mura [45]). In this paper we find other shapes besides ellipsoids
with these properties.

The relevant problem can be formulated as the following partial differ-
ential equation for v : IRn → IRm:

div[L∇v + PχΩ ] = 0 on IRn, (1-1)

where P ∈ IRm×n, and the tensor L : IRm×n → IRm×n is assumed to be self-
adjoint and positive-definite. Also, Ω ⊂ IRn is called the inclusion and χΩ

is the characteristic function of Ω. In the application to ferromagnetism,
m = 1, ∇v is the magnetic field, P is the magnetization, and L is the
identity. In applications to electrostatics, m = 1, ∇v is the electric field, P
is the polarization, and L is the inverse of the product of the permittivity
of free space and the susceptibility tensor. In the application to linearized
elasticity, m = n, ∇v is the displacement gradient, P is the eigenstress and
L is the elasticity tensor.

In the theory of composites and in fracture mechanics a related problem,
called the inhomogeneous Eshelby inclusion problem, appears often. The
governing equations for this problem are

div[L(x, Ω)(∇v(x) + FχΩ)] = 0 on IRn, (1-2)

where F ∈ IRm×n is the eigenstrain and the elasticity tensor

L(x, Ω) =
{

L1 x ∈ Ω,
L2 x ∈ IRn \Ω.

(1-3)

The inhomogeneous Eshelby inclusion problem concerns two different elastic
materials, one inside the inclusion, and an imposed eigenstrain F on the
inclusion. Eshelby [13] realized that under suitable mild hypotheses on
the elasticity tensors the homogeneous problem (1-1) can be used to solve
inhomogeneous problem (1-2) provided that the induced field ∇v for the
homogeneous problem (1-1) is constant on Ω. It is this relation between
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(1-2) and (1-1) that allows us to use the special inclusions to obtain optimal
bounds for composites.

The requirement that a solution v of problem (1-1) satisfy∇v = constant
on Ω places strong restrictions on the region Ω. The main purpose of this
paper is to find special regions with this property in the periodic and other
cases, including cases in which Ω is multiply connected.

Since ∇v being constant on Ω leads to great simplification, ellipsoids
play a central role in the theory of composites (Christensen [8]; Mil-
ton [43]), in micromechanics (Mura [45]) and in experimental measure-
ments (Brown [6]). The uniformity of the induced field can also be used to
simplify free energy minimization problems that arise in theories of ferro-
electric and magnetostrictive materials (Desimone & James [10]; Bhat-
tacharya & Li [4]; Liu, James & Leo [37]), and this was our original
motivation for developing the theory of E-inclusions. Roughly speaking, even
though these are non-convex variational problems, the special properties of
ellipsoids are used to show that certain weak limits of minimizing sequences
are uniform, and this allows one to find, and also to minimize, the relaxed
energy. Two or more ellipsoids do not enjoy this special property. Thus in
many of these applications, only one ellipsoid can be present in the model,
and therefore the results apply either to isolated ellipsoids or to composites
in the dilute limit. In most if not all of these cases it is not an ellipsoid per
se that is being used but only its property of having uniform field, when it
is uniformly magnetized. Many authors have speculated on the possibility
that other regions may have this property (Mura [46]), and that, if so,
their analysis would also apply to those regions.

We now define an E-inclusion, which is the mathematically natural
generalization of an ellipsoid in this context1 (see Liu, James & Leo [38]).
We note that, while these definitions concern the scalar-valued case, we will
show (Section 4) that they apply to many vector-valued examples of the type
described above. Separate but closely related definitions of E-inclusions are
given for the periodic and nonperiodic cases. More general situations are
discussed in Section 5.

Definition 1. Let measurable Ωi with |∂Ωi| = 0 (i = 1, · · · , N) be bounded
and mutually disjoint subsets of IRn, and let K = (Q1, · · · ,QN ) be an array
of N symmetric n× n matrices.

i) (Ω1, · · · , ΩN ) is an E-inclusion corresponding to K if there is a solution
u ∈ W 2,2

loc (IRn) of problem

∆u =
N∑

i=1

piχΩi on IRn, pi = Tr(Qi), (1-4)

1 The terminology “E-inclusions” refers to three associations: 1) this study
was motivated by the Eshelby inclusion problem as described above; 2) they are
a generalization of ellipsoids, and, conversely, ellipsoids can be regarded as the
dilute limits of special periodic E-inclusions; 3) they are extremal structures for a
broad class of energy minimization problems for multiphase composites.
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satisfying

∇∇u = Qi on Ωi \ ∂Ωi ∀ i = 1, · · · , N. (1-5)

The interpretation of the Poisson equation (1-4) is in terms of the Newto-
nian potential representation for u, see (4.1) of Gilbarg & Trudinger [17].

ii) Let a Bravais lattice L = {∑n
i=1 νiei : νi ∈ ZZ and e1, · · · , en ∈

IRn are linearly independent} with an open unit cell Y = {∑n
i=1 xiei :

0 < xi < 1} be given. Assume Ω = ∪N
i=1Ωi ⊂ Y . Then the set Ωper =

∪r∈L{r + Ω} is a periodic E-inclusion corresponding to K if there is
a solution u ∈ W 2,2

per(Y ) of
{

∆u =
∑N

i=0 piχΩi on Y, pi = Tr(Qi),
periodic boundary conditions on ∂Y

(1-6)

satisfying

∇∇u = Qi on Ωi \ ∂Ωi ∀ i = 1, · · · , N, (1-7)

where Ω0 = Y \Ω, and p0 ∈ IR is chosen such that
∑N

i=0 piθi = 0. Here
θi = |Ωi|/|Y | is the volume fraction of Ωi in Y .

It is desirable to allow the arbitrary set of measure zero on the boundaries
in the definition of E-inclusions, because of examples like Fig. 5. The W 2,2

regularity in these definitions is standard for these equations. In fact, using
Lp estimates for the Laplace operator we see that u ∈ W 2,p

loc (resp., W 2,p
per) for

any 1 < p < ∞ since the right-hand side of (1-4) (resp., (1-6)) is bounded
in L∞ (Gilbarg & Trudinger [17], page 235).

Equations (1-1) and (1-2) and their periodic counterparts are closely
related to equations (1-4) and (1-6), respectively. In particular, in the mag-
netic case (recall m = 1), v = P · ∇u, and the magnetization on inclusion
Ωi (i = 1, . . . , N) is (pi − p0)P and zero elsewhere. Also, each matrix in
(Q1, · · · ,QN ) plays the same role as the conventional demagnetization ma-
trix does for an isolated ellipsoid. The demagnetization matrix defines the
linear transformation that maps the magnetization P to the magnetic field
∇v when Ω is an ellipsoid. Further discussion of the relation between (1-1),
(1-2) and (1-4), (1-6) is given in Section 4.1.

Besides ellipsoids, examples of E-inclusions include the well-known con-
struction of Vigdergauz [52] for two dimensional periodic E-inclusions
which are simply connected in one unit cell. Other examples of which we
are aware include two dimensional two-component E-inclusions in a forth-
coming paper of Kang & Milton [27]. While considering the effective
properties of an elastic plate with a periodic array of “equal-strength” holes,
Vigdergauz found his construction using complex variable methods. Mil-
ton( [43], page 481) subsequently reduced the construction of Vigdergauz to
a Dirichlet problem. Grabovsky & Kohn [20] gave a concise derivation of
the Vigdergauz construction and showed that it is an optimal structure for
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two-phase composites. These results on the status of E-inclusions as optimal
structures in homogenization theory, and the results mentioned above on
energy minimization, show that E-inclusions have a more fundamental rela-
tion to the underlying equations than merely as a method of simplification.
We present several applications of this type in Section 4.

In Section 2 we present a general method for constructing E-inclusions.
They are found as solutions of a simple variational inequality with a piece-
wise quadratic obstacle. The region where the minimizer touches the ob-
stacle defines the E-inclusion. The existence and regularity of minimizers
for this variational inequality are adapted from the textbook of Fried-
man [15]. We further show that periodic E-inclusions corresponding to a
single negative-semidefinite matrix (N = 1) can be constructed in all di-
mensions and with any volume fraction. The lattice vectors defining the
periodicity can be arbitrarily prescribed. In two dimensions, one family of
these periodic E-inclusions specialize to the Vigdergauz microstructure. By
varying the piecewise quadratic obstacle in the variational inequality, a va-
riety of more general E-inclusions can be produced. For example, we can
construct periodic E-inclusions with multiply connected components. In Sec-
tion 3 we present a numerical scheme for calculating periodic E-inclusions
and various examples of the calculated periodic E-inclusions. In Section 4.1
we solve the periodic Eshelby inclusion problem and explicitly calculate
the effective properties of two-phase composites with periodic E-inclusion
structures. In Section 4.2 explicit bounds for the effective properties of two-
phase composites are derived and are shown to be attained by the periodic
E-inclusions. In Section 5 we introduce a generalized concept of E-inclusions
called sequential E-inclusions in terms of gradient Young measure. We finish
with a summary of our results.

2. A method for constructing special inclusions

2.1. Existence of periodic E-inclusions

In this section, we present a method for the construction of E-inclusions.
Readers who are more interested in the examples and applications of E-
inclusions may skip to Sections 3 and 4.

A general method for constructing special inclusions is based on a varia-
tional inequality (Kinderlehrer & Stampacchia [33]; Friedman [15]).
For periodic E-inclusions in IRn (n ≥ 1), we consider

Gf (uf ) ≡ min
u∈Kper

{
Gf (u) ≡

∫

Y

[
1
2
|∇u|2 + fu]dx

}
, (2-1)

where f > 0 is a constant and the admissible set Kper = {u ∈ W 1,2
per(Y ) :

u(x) ≥ φper(x) a.e. on IRn}. This type of minimization problem is also
known as a free-boundary obstacle problem and the given function φper is
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called the obstacle. Here and afterwards, Y is an open unit cell associated
with a Bravais lattice L as defined above. We further assume

φper ∈ C0,1
per(Y ) and

∂2φper

∂ξ2
≥ −C in the sense of distributions on IRn, (2-2)

where ξ is any unit vector in IRn, ∂/∂ξ denotes the directional derivative
and C > 0 is a constant. This means that for any ϕ ∈ C∞c (IRn) and any
unit vector ξ ∈ IRn,

∫
[φper +

1
2
C|x|2]∂

2ϕ

∂ξ2
dx ≥ 0,

see Friedman ([15], page 28).
If v ∈ Kper, from the convexity of Kper we have wε = uf + ε(v − uf ) ∈

Kper for all ε ∈ (0, 1). Since uf being a minimizer implies 1
ε [Gf (wε) −

Gf (uf )] ≥ 0, sending ε to 0 we obtain a necessary condition for a minimizer
∫

Y

[∇uf · ∇(v − uf ) + f(v − uf )]dx ≥ 0 ∀ v ∈ Kper. (2-3)

The coincident set Ωf
per and noncoincident set Nf

per are defined as

Ωf
per := {x ∈ IRn : uf (x) = φper(x)} (2-4)

and

Nf
per := {x ∈ IRn : uf (x) > φper(x)}, (2-5)

respectively.
The existence, uniqueness and regularity of the minimizer for the vari-

ational inequality (2-1) have been well established, see Kinderlehrer &
Stampacchia [33]; Friedman [15].

Theorem 1. The variational inequality (2-1)-(2-2) has a unique minimizer
uf ∈ W 2,∞

per (Y ) for all f > 0.

Using this result (uf ∈ W 2,∞
per (Y )), we have that the noncoincident set

Nf
per is open. For any ϕ ∈ C∞c (Nf

per) ∪ {ϕ ∈ C∞c (IRn) : ϕ ≥ 0}, there
exists small enough ε > 0 such that v = uf + εϕ ∈ Kper. Plugging v into
equation (2-3), it then follows that

−∆uf + f ≥ 0, uf ≥ φper, and
(−∆uf + f)(uf − φper) = 0 a.e. on Y. (2-6)

Recalling the definition of periodic E-inclusions in Section 1, we use
periodic piecewise quadratic obstacles to construct periodic E-inclusions.
First, we assign N quadratic functions q1, . . . , qN on Y . Second, we consider
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a disjoint measurable subdivision of Y into subsets U1, . . . ,UN . We say that
φper : IRn → IR is a periodic piecewise quadratic obstacle if

(i) φper satisfies (2-2), and
(ii) φper = qi on Ui.

In general one may not be able to construct a periodic piecewise quadratic
obstacle from given quadratic functions. Below we give two examples of pe-
riodic piecewise quadratic obstacles. Both examples use concave quadratic
functions. We note that the definition, however, also includes some cases
in which some of the qi are not concave. The latter is important for ex-
tending the attainability of the Hashin-Shtrikman bounds for multiphase
composites.

Example 1. Let q1, . . . , qN be strictly concave quadratic functions defined
on IRn. Then

φper(x) = sup{qi(x + r) : r ∈ L, i = 1, . . . , N} (2-7)

is a periodic piecewise quadratic obstacle. To see the connection with Fried-
man ([15], page 44, Ex.2), consider an open bounded domain D. Using the
strict concavity of the qi, we can write φper|D as the maximum of a finite
number of quadratic functions. Then (2-2) is verified on D. Using the ar-
bitrariness of D and the fact that ϕ in (2-2) has compact support, we see
that (2-2) is satisfied on all of IRn.

Example 2. Assume N = 1 and consider a negative semi-definite symmetric
matrix Q1 = Q 6= 0 and denote by R(Q) ⊂ IRn the range of Q. Let
(e1, · · · , en′) be a basis of the subspace R(Q). Then

φper(x) = sup{ 1
2
(x + r) ·Q(x + r) : r =

n′∑

i=1

νiei, νi ∈ ZZ} (2-8)

is a periodic piecewise quadratic obstacle. The proof that this construction
gives a periodic piecewise quadratic obstacle is similar to that in Example
1.

The definition of the coincident set clearly implies

∇∇uf (x) = ∇∇φper(x) on Ωf
per \ ∂Ωf

per. (2-9)

Further, it has been shown the free boundary ∂Ωf
per has measure zero in

IRn (Friedman [15], page 154). From this fact, Theorem 1, and (2-6)-(2-9),
it follows that the minimizer uf ∈ W 2,∞

per (Y ) solves the overdetermined
problem





∆uf = fχNf
per

+ ∆φperχΩf
per

a.e. on Y,

∇∇uf (x) = ∇∇φper(x) on the interior of Ωf
per ∩ Y,

periodic boundary conditions on ∂Y.

(2-10)
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Since φper is a periodic piecewise quadratic obstacle, there exist symmetric
matrices (Q1, · · · ,QN ) and mutually disjoint regions (Ω0, Ω1, · · · , ΩN ) in
Y , which satisfy |∂Ωi| = 0 and are well-defined within a set of measure zero,
such that

∆uf = f on Ω0 = Y \ (∪N
i=1Ωi) and (2-11)

∇∇uf (x) = Qi on Ωi \ ∂Ωi ∀ i = 1, · · · , N.

Therefore, we have obtained the following result.

Theorem 2. Consider the variational inequality (2-1) with a piecewise quadratic
obstacle φper. Then the coincident set Ωf

per is a periodic E-inclusion with
p0 = f , for any f > 0.

From equation (2-11) and Definition 1, the periodic E-inclusion Ωf
per so

constructed corresponds to

K = (Q1, · · · ,QN ) and Θ = (θ1, · · · , θN ),

where θi = |Ωi|/|Y | is the volume fraction of Ωi in Y (i = 0, 1, · · · , N).
Clearly, the volume fractions Θ necessarily satisfy

θi ∈ [0, 1] for all i = 1, · · · , N and 1− θ0 =
N∑

i=1

θi ∈ (0, 1). (2-12)

However, they are not all known a priori. Additionally, they satisfy

∫
−

Y

∆ufdx = 0 =⇒ fθ0 +
N∑

i=1

piθi = 0, (2-13)

where pi = Tr(Qi) (i = 1, · · · , N) from the second of (2-11). Since f can
be any positive number, equation (2-13) implies that the volume fraction
1− θ0 of the periodic E-inclusion can be any number between zero and one
in the case N = 1.

There are non-obvious restrictions on K and Θ that arise from the defini-
tion of a periodic E-inclusion. Let u be the solution of (1-6)-(1-7) appearing
in the definition of a periodic E-inclusion. For any m ∈ IRn, the divergence
theorem implies that

θ0

∫
−

Ω0

|(∇∇u)m|2dx

= m · [
∫
−

Y

∆u∇∇udx]m−
N∑

i=1

θi

∫
−

Ωi

|(∇∇u)m|2dx. (2-14)
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We bound the left-hand side of (2-14)

θ0

∫
−

Ω0

|(∇∇u)m|2dx ≥ θ0m ·
[∫
−

Ω0

∇∇udx
]2

m

=
1
θ0

m ·
[ N∑

i=1

θi

∫
−

Ωi

∇∇udx
]2

m,

where the equality follows from the periodicity of u

∫
−

Y

∇∇udx = 0 =⇒ θ0

∫
−

Ω0

∇∇udx = −
N∑

i=1

θi

∫
−

Ωi

∇∇udx. (2-15)

For the first term on the right-hand side of (2-14), since ∆u = p0 on Ω0,
we have

θ0m · [
∫
−

Ω0

∆u∇∇udx]m = p0m · [θ0

∫
−

Ω0

∇∇udx]m

= p0m · [−
N∑

i=1

θi

∫
−

Ωi

∇∇udx]m,

where the second equality is justified by using again (2-15). Therefore, equa-
tion (2-14) implies the following restriction on K and Θ :

N∑

i=1

[θ0Tr(Qi) +
N∑

j=1

θjTr(Qj)]θiQi ≥ θ0

N∑

i=1

θiQ2
i + [

N∑

i=1

θiQi]2, (2-16)

where equations (1-7) and θ0p0 = −∑N
j=1 θjTr(Qj) have been used. Also,

for two self-adjoint linear mappings, M1 ≥ (resp., >)M2 means M1 −M2

is positive semi-definite (resp., positive definite). This convention is followed
subsequently. It is not known in general whether K and Θ satisfying (2-12)
and (2-16) can all be achieved by periodic E-inclusions. For many applica-
tions, the following question is crucial:

Question 1. For what values of K and Θ can we find a periodic E-inclusion?

For some special cases, the answer to Question 1 is known. The following
remark describes such an example.

Remark 1. In the case N = 1, equations (2-12) and (2-16) are equivalent
to

θ ∈ (0, 1) and Q ≥ 0 or Q ≤ 0, (2-17)

where θ is the volume fraction of a periodic E-inclusion. Note that we have
suppressed the subscript “i”. Below we verify that a periodic E-inclusion
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can be found for any nonzero2 Q and θ satisfying (2-17). If Q ≤ 0 but is
not equal to the zero matrix, we choose the periodic piecewise quadratic
obstacle of Example 2, (2-8). From Theorem 2 and (2-13), it follows that
the coincident set Ωf

per is a periodic E-inclusion corresponding to Q and its
volume fraction is θ = f/(f −Tr(Q)). Since f can be any positive number,
θ can be any number between zero and one.

By replacing u by au (a ∈ IR) in the Definition 1, we see that if Ωper is
a periodic E-inclusion corresponding to Q and θ, then it is also a periodic
E-inclusion corresponding to aQ and θ. The case Q ≥ 0 follows from the
case Q ≤ 0 by setting a = −1.

It is often desirable to fix the arbitrary multiplicative constant associated
with the matrix Q 6= 0. For future convenience, let us rephrase Remark 1
as the following theorem.

Theorem 3. Let

Q := {X ∈ IRn×n
sym : X ≥ 0 and Tr(X) = 1}. (2-18)

For any matrix Q ∈ Q and any volume fraction θ ∈ (0, 1), there exists a
periodic E-inclusion Ωper such that the overdetermined problem





∆u = θ − χΩ on Y

∇∇u = −(1− θ)Q on Ω \ ∂Ω

periodic boundary conditions on ∂Y

(2-19)

has a solution in W 2,∞
per (Y ), where Y is a unit cell, Ω = Y ∩Ωper with |∂Ω| =

0, and θ = |Ω|/|Y |. Conversely, if the overdetermined problem (2-19) has
a solution u ∈ W 2,∞

per (Y ) for a nonzero matrix Q, then the matrix Q must
belong to Q.

Proof. Only the last statement needs proof, but this follows immediately
by taking the trace of the second equation in (2-19), and also by using the
inequality (2-16). The space W 2,∞

per comes from Theorem 1.

2.2. Existence of nonperiodic E-inclusions for n ≥ 3

To construct nonperiodic E-inclusions in IRn, n ≥ 3, we use the varia-
tional inequality

Gr(ur) = inf
u∈Kr

{
Gr(u) ≡

∫

Br

1
2
|∇u|2dx

}
, (2-20)

where Br is the open ball centered at the origin of radius r, and the admis-
sible set is

Kr = {v ∈ W 1,2
0 (Br) : v ≥ φ}. (2-21)

2 The case Q = 0 is not of interest since it implies u = const. on IRn in
Definition 1.
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We use this variational inequality to find ur and the coincident set, and
then we pass to the limit r → ∞ to establish the existence of nonperiodic
E-inclusions.

Let q1, . . . , qN be quadratic functions on IRn and U1, . . . ,UN a disjoint
measurable subdivision of IRn. As before, we say that φ : IRn → IR is a
piecewise quadratic obstacle if

(i) φ ∈ C0,1(IRn), ∂2φ/∂ξ2 > −C on IRn in distributional sense, for all
|ξ| = 1,

(ii) φ = qi on Ui (i = 1, · · · , N), and
(iii) There exists R0 > 0 such that φ(x) < 0 if |x| ≥ R0.

Here, as above, ∂/∂ξ denotes the directional derivative. From the established
theory (Kinderlehrer & Stampacchia [33], page 129; Friedman [15],
page 31), we have

Theorem 4. The variational inequality (2-20) with φ being a piecewise
quadratic obstacle has a unique minimizer ur ∈ W 2,∞(Br) ∩W 1,∞

0 (Br) for
each r ≥ R0. Further, the unique minimizer satisfies

(i) φ ≤ ur ≤ sup{φ(x) : x ∈ Br} on Br,
(ii) The boundary of the coincident set Ωr := {x ∈ Br : ur(x) = φ(x)} has

measure zero in IRn, and
(iii) There exists a constant C > 0, independent of r, such that

‖∇∇ur‖L∞(Br) < C. (2-22)

By using arguments parallel to those in the derivation of equation (2-6),
it can be similarly shown that the minimizer ur satisfies

−∆ur ≥ 0, ur ≥ φ, and −∆ur(ur − φ) = 0 a.e. on Br. (2-23)

Thus, the minimizer ur in fact solves the following overdetermined problem




∆ur = χΩr∆φ a.e. on Br,

∇∇ur = ∇∇φ on Ωr \ ∂Ωr,

ur = 0 on ∂Br.

(2-24)

A limiting minimizer of problem (2-20) can be defined as follows. Let
rj → +∞ be an increasing sequence. From equation (2-22) and ‖ur‖L∞(BR) <
supBR

|φ|, it follows that for any r > R > R0, there is a constant M , inde-
pendent of r, such that

‖ur‖W 2,∞(BR) ≤ M. (2-25)

Generally, M can depend on R, R0 and the obstacle φ. Since urj
is uniformly

bounded in W 2,∞(BR) for fixed R > R0, there exists u∞ ∈ W 2,∞(BR) such
that, up to a subsequence and without relabeling,

urj
⇀ u∞ weakly∗ in W 2,∞(BR). (2-26)
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From (2-23) and (2-26), it is easy to verify that

−∆u∞ ≥ 0, u∞ ≥ φ, and −∆u∞(u∞ − φ) = 0 a.e. on BR. (2-27)

In particular, the first two of (2-27) follow from linearity, while the third
of (2-27) is justified by the uniform convergence of ur → u∞. In fact, we
can repeat this argument for a sequence of larger and larger values of R,
each time taking further subsequences of urj

, and thereby obtain a function
u∞ ∈ W 2,∞

loc (IRn) satisfying (2-26) and (2-27) for any R > R0. Note that
equation (2-27) implies that the coincident set Ω∞ := {x ∈ IRn : u∞(x) =
φ(x)} ⊂ BR0 have the property that |∂Ω∞| = 0, see Friedman ([15], page
154).

We claim that u∞ solves the following overdetermined problem:




∆u∞ = χΩ∞∆φ a.e. on IRn,

∇∇u∞ = ∇∇φ on Ω∞ \ ∂Ω∞,

|u∞(x)| ≤ C0
|x|n−2 for |x| ≥ R0,

(2-28)

for some C0 > 0. The first two equations in (2-28) are consequences of the
last equation in (2-27) and the definition of the coincident set Ω∞ with
|∂Ω∞| = 0. To justify the last equation, we notice that, by the maximum
principle applied to the first of (2-23), the minimum of ur(x) must be at-
tained at ∂Br which implies ur(x) ≥ 0 on Br. It then follows that the coin-
cident set Ωr is contained in the open ball BR0 for all r > R0. Then it can be
verified, by the method of Green’s functions (Gilbarg & Trudinger [17],
page 19), that for n ≥ 3

|ur(x)| ≤ C0

|x|n−2
∀R0 ≤ |x| < r, (2-29)

where C0 is a positive constant independent of r. Therefore, by the triangle
inequality, |u∞| ≤ |urj

−u∞|+ |urj
| ≤ |urj

−u∞|+C0/|x|n−2 on BR. Fixing
R and taking the limsup over rj > R we get the desired result.

Finally we show the limiting minimizer u∞ must be unique and the con-
vergence in equation (2-26) is in fact strong. Assume there is a second limit
u′∞ that satisfies (2-26), and therefore, (2-27)-(2-28). Equations (2-27) and
(2-28) imply that for any v ∈ K∞ := {u ∈ W 1,2

loc (IRn) : u ≥ φ,
∫

IRn |∇u|2dx
< ∞, |u(x)| → 0 as |x| → ∞},

∫

IRn

∇u∞ · ∇(v − u∞)dx =
∫

IRn

(−∆u∞)(v − u∞)dx (2-30)

=
∫

{u∞>φ}
(−∆u∞)(v − u∞)dx +

∫

{u∞=φ}
(−∆u∞)(v − φ)dx ≥ 0.

Clearly, equation (2-30) holds with u∞ replaced by u′∞ as well:
∫

IRn

∇u′∞ · ∇(v − u′∞)dx ≥ 0 ∀ v ∈ K∞. (2-31)
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Since u′∞, u∞ ∈ K∞, adding equation (2-30) with v = u′∞ to equation (2-31)
with v = u∞, we obtain

−
∫

IRn

|∇(u′∞ − u∞)|2dx ≥ 0.

Thus, u∞ can be different from u′∞ at most by a constant. From the last
equation in (2-28) it follows that u′∞ = u∞.

We summarize below.

Theorem 5. Consider the variational inequality problem (2-20) with a piece-
wise quadratic obstacle φ and define the limiting minimizer u∞ and coinci-
dent set Ω∞ as above. Then, the coincident set Ω∞ is an E-inclusion.

We remark that the Eshelby conjectures (Eshelby [12]) can be proved
in the framework of variational inequalities. The details will be presented
in a separate publication (Liu [36]). Recently we learned of that Kang
& Milton [26] independently proved these conjectures, who also observed
that the Pólya-Szegö conjecture (Pólya & Szegö [48]) is equivalent to a
version of the Eshelby conjectures.

Fig. 1. Simple laminations belong to a special family of periodic E-inclusions.
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Fig. 2. Confocal ellipses are a special family of periodic E-inclusions.

3. Examples of periodic E-inclusions

We now consider various examples of periodic E-inclusions. From the
discussion above, periodic E-inclusions constructed by Theorem 2 can be
specified by a Bravais lattice L, the quantity f > 0 and a periodic piece-
wise quadratic obstacle φper. It is worthwhile noticing that from the com-
parison theorem (see e.g. Friedman [15], page 26), periodic E-inclusions
corresponding to a fixed obstacle satisfy Ωf1

per ⊂ Ωf2
per if f2 > f1 > 0. Also

the interior of any periodic E-inclusion cannot contain the singular points
of the obstacle on which ∇∇φper is unbounded in distributional sense. By
varying the obstacle φper and f , a large class of periodic E-inclusions can
be constructed in any dimension n ≥ 1. We show a few examples of them
below.

The first example is a simple lamination. Let n ∈ IRn be a unit vector,
f > 0, a < 0, and hper(x) = max{ 1

2a(x+ν)2 : ν ∈ ZZ} for x ∈ IR. Consider
the obstacle

φper(x) = hper(x · n).
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By the method given above this is a periodic E-inclusion corresponding
to Q1 = an ⊗ n and Q2 = fn ⊗ n with volume fractions f/(f − a) and
−a/(f − a), respectively, see Fig. 1. In another words a simple lamination
is a periodic E-inclusion.

The coated spheres (Hashin & Shtrikman [21]) and confocal ellipsoids
(Milton [42]), familiar from homogenization theory, can be constructed as
a periodic E-inclusions. The example in Fig. 2 is computed by using the
obstacle

φper(x) = max{0,
1
2
(x + r) ·Q1(x + r) + h1 : r ∈ L},

where h1 > 0, Q1 < 0 are appropriately chosen so that the graph of the ob-
stacle consists of isolated “mountains” emerging out of a horizontal “sea”.
So, if f is large enough, the minimizer uf contacts the mountains around
the peaks and the sea but is detached from the rim of singular points of
φper. It can be proved that the coincident set in each unit cell is separated
by two confocal ellipsoids, by noticing the Newtonian potential of a homo-
geneous solid ellipsoid is not only quadratic inside the ellipsoid, but also
quadratic outside the ellipsoid on the equipotential surface which is a con-
focal ellipsoid, see Kellogg [28]. On the other hand, if f is very small
or the obstacles of (2-8) are considered, one obtains the Vigdergauz-type
structure as the coincident set of the variational inequality (2-1); see also
Grabovsky & Kohn [20] for an analytic derivation of the Vigdergauz
structure. Our constructions generalize immediately to higher dimensions.

More general periodic E-inclusions are not amenable to simple analytic
descriptions. So we turn to numerical methods, which are easy to imple-
ment for the variational inequality. First let us consider the variational
problem (2-1) with the constraint u ≥ φper neglected. Clearly the Euler-
Lagrange equation of this variational problem is the Poisson equation

{
∆u = f on Y,

periodic boundary conditions on ∂Y,

which, according to the finite element method (see e.g. Kwon & Bang [34]),
can be discretized as

K̂û = f̂ . (3-1)

Here û, a column vector, denotes the values of the potential u at the nodal
points in the finite element model, K̂ and f̂ are usually called the stiffness
matrix and loads, respectively. Now let us take into account the discretized
constraint û ≥ φ̂per, where φ̂per are the values of the obstacle φ̂per at the
nodal points. The discrete version of the variational inequality (2-1) becomes
the following quadratic programming problem:

min{Ĝ(û) = − 1
2
û · K̂û + f̂ · û : û ≥ φ̂per}, (3-2)
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Fig. 3. Vigdergauz structures in a square cell corresponding to Q = − diag(1, 1).
The blue curves are our numerical results based on the variational inequality, and
the red “+” signs are the analytic solutions. The inset numbers are the volume
fractions of the Vigdergauz structures.

which can be easily solved using standard solvers. The following compu-
tations use a uniform mesh with around 105 nodal points. The iterations
are terminated when the relative difference between the values Ĝ(û) of two
consecutive iterations is less than 10−10. With these parameters, the itera-
tions converge within a few minutes on a personal computer. The resulting
periodic E-inclusion includes all nodal points on which |û − φ̂| is less than
a× 10−3, where a is at the order of 1.

The numerical scheme is verified by comparing the results with the ana-
lytic solutions for the Vigdergauz structures in two dimensions with a square
unit cell and with Q = −diag(1, 1). The volume fractions were chosen to
be, from inward to outward, 0.06, 0.12, 0.18, 0.26, 0.34, 0.43, 0.55, 0.67.
In Fig. 3 the solid blue curves are the numerical results while the red “+”
signs denote the analytic solutions. There is good agreement between the
exact shapes and our calculated shapes. As is well-known from the Vigder-
gauz construction, E-inclusions are asymptotic to a circle at small volume
fraction and to the unit square at volume fractions approaching one.

It should be noticed that a periodic E-inclusion may not look like an
“inclusion” at all. Figure 2 shows such an example, the E-inclusion being
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Fig. 4. A periodic E-inclusion in the case N = 2 with two components corre-
sponding to Q1 = − diag(1, 1) and Q2 = − diag(2, 3), and volume fractions 0.19
and 0.65, respectively.

the interior of the inner ellipse and the exterior of the outer ellipse. A more
general example is shown in Fig. 4. This example is calculated using the
obstacle

φper(x) = max{ 1
2
(x + r) ·Q1(x + r),

1
2
(x + r) ·Q2(x + r) + h2 : r ∈ 2ZZ2 − d},

where

Q1 = −diag(1, 1), Q2 = −diag(2, 3), d = (1, 1) and h2 = 0.2.

The periodic E-inclusion has two components: one consists of the inner
region corresponding to Q1 and volume fraction 0.19, and the other is the
squarish annulus corresponding to Q2 and volume fraction 0.65. This type
of structure can be regarded as a generalization of multi-coated spheres
(Lurie & Cherkaev [40]) in the periodic setting.

An interesting scenario is plotted in Fig. 5. Periodic E-inclusions in this
figure, corresponding to two different matrices Q1 and Q2, have nevertheless
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Fig. 5. A sequence of periodic E-inclusions with N = 2, Q1 = − diag(1, 1) and
Q2 = − diag(2, 1). In this case Q1 and Q2 differ by a rank-one matrix and the two
parts of E-inclusion are separated by a plane. The volume fractions from inward
to outward are (0.01, 0.007), (0.06, 0.04), (0.19, 0.12), (0.29, 0.18), (0.39, 0.26).

only one connected component in one unit cell. Periodic E-inclusions of this
kind can be constructed by using the obstacle

φper(x) = max{P (x + r) : r ∈ L},
where

P (x) =

{
1
2x ·Q1x if x · n < 0,
1
2x ·Q2x if x · n ≥ 0,

Q1, Q2 < 0 and Q1−Q2 = bn⊗n for some b ∈ IR and unit vector n ∈ IRn.
Inside such a periodic E-inclusion, there is a plane interface with normal n
that separates ∇∇u = Q1 and ∇∇u = Q2. Figure 5 is plotted by using

Q1 = −diag(1, 1) and Q2 = −diag(2, 1).
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Fig. 6. A sequence of periodic E-inclusions with N = 2, Q1 = − diag(1, 1) and
Q2 = − diag(2, 2). The volume fractions from inward to outward are (0.02, 0.01),
(0.07, 0.03), (0.22, 0.09), (0.33, 0.14), (0.45, 0.19). The figure shows four unit
cells.

The periodic E-inclusions corresponding to (Q1,Q2), from inward to out-
ward, have volume fractions (0.01, 0.007), (0.06, 0.04), (0.19, 0.12), (0.29, 0.18),
(0.39, 0.26).

We can construct periodic E-inclusions with multiple components of a
very different topology from Fig. 4. Consider the obstacle

φper(x) = max{ 1
2
(x− di + r) ·Qi(x− di + r) :

i = 1, · · · , N ; r ∈ L}, (3-3)

where d1, · · · ,dN ∈ IRn. Figure 6 shows examples of this kind, correspond-
ing to L = 2ZZ2, N = 2, and

Q1 = −diag(1, 1), Q2 = −diag(2, 2), d1 = [1, 1], d2 = [2, 2].

Note that four unit cells are plotted in the figure. Each periodic E-inclusion
has two components in one unit cell corresponding to Q1 and Q2, respec-
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tively. The volume fractions, from inward to outward, are (0.02, 0.01),
(0.07, 0.03), (0.22, 0.09), (0.33, 0.14), (0.45, 0.19). The red curves delimit
the singular points of the obstacle which can never intersect the interior of
an E-inclusion. Thus, the boundaries of the E-inclusions approach the red
curves since the total volume fractions of the E-inclusions approach 1 as
f → +∞, as is implied by equation (2-13).

Fig. 7. A periodic E-inclusion corresponding to N = 1, Q1 = Q = − diag(3, 3, 1),
and volume fraction 0.37.

The numerical scheme (3-1) can also be carried out in three dimensions.
The meshes used in three dimensions are not as dense as those in two
dimensions. So, the computed E-inclusions are less smooth than those in two
dimensions. Simplified computations have been performed and approximate
periodic 3-D E-inclusions with cubic symmetry have been given in Liu,
James & Leo [38]. There it was noted that the periodic E-inclusions are
well approximated by generalized ellipsoids defined by

GE(α) = {(x1, x2, x3) :
xα

1

aα
1

+
xα

2

aα
2

+
xα

3

aα
3

≤ 1}.
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Fig. 8. A periodic E-inclusion with N = 3 having three components in the unit cell
and Q1 = − diag(1, 1, 1), Q2 = Q3 = − diag(3, 3, 1). The top and bottom components
corresponding to Q2 and Q3 are mirror symmetric and have the same volume frac-
tion 0.03, and the middle component has volume fraction 0.35. Only one fourth of
the middle component is plotted in the figure. The full middle component is shown
separately in Fig. 9

We then optimized the index α such that GE(α) is the best approximation
according to certain criterion. This formula can interpolate an ellipsoid and
a cube. In present approach no assumption are made about the shape of
the E-inclusions to be calculated.

Not surprisingly, the different scenarios represented in figures 1-6 are all
realizable in three dimensions. Three typical examples are selected here. In
Fig. 7 a periodic E-inclusion is calculated in the cubic unit cell (−1, 1)3

with the obstacle (2-8) and Q = −diag(3, 3, 1). The volume fraction of this
E-inclusion is 0.37. The tendency of the boundaries of the E-inclusion to
become flatter when they come closer to each other is more obvious in three
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Fig. 9. The middle component of the periodic E-inclusion in Fig. 8 shown sepa-
rately.

dimensions. The mesh in this and following figures does not represent the
actual mesh used in the computation but is merely used for visualization.

A three-component periodic E-inclusion is plotted in Fig. 8. It is calcu-
lated using the obstacle

φper(x) = max{ 1
2
(x + r + di) ·Qi(x + r + di) : i = 1, 2, 3, r ∈ 2ZZ3},

where Q1 = −diag(1, 1, 1), Q2 = Q3 = −diag(3, 3, 1), d1 = (0, 0, 0),
d2 = (0, 0, 0.5) and d3 = (0, 0,−0.5). The top and bottom components
corresponding to (Q2,Q3) have the same volume fraction 0.03 and the mid-
dle component corresponding to Q1 has volume fraction 0.35. Note that
only one fourth of the middle component is plotted in Fig. 8. The mid-
dle component is plotted separately in Fig. 9. A final example is shown in
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Fig. 10. A periodic E-inclusion for the case N = 2 with one component sur-
rounding the other in the unit cell. Only half of the E-inclusion is shown. The
inner and outer components correspond to matrices Q2 = − diag(3, 3, 1), Q1 =
− diag(1, 1, 1) and have volume fractions (0.11, 0.40), respectively. See Fig. 11 for
top view.

Fig. 10, which is calculated with the obstacle

φper(x) = max{ 1
2
(x + r) ·Q1(x + r),

1
2
(x + r) ·Q2(x + r) + h2 : r ∈ 2ZZ3},

where Q1 = −diag(1, 1, 1), h2 = 0.2 and Q2 = −diag(3, 3, 1). Only half of
the E-inclusion is plotted in this figure. The inner and outer components
in the figure correspond to (Q2,Q1) and have volume fractions (0.11, 0.40),
respectively. The top view is shown in Fig. 11.

4. Applications

In this section, we use periodic E-inclusions to solve problems for two-
phase composites. From Definition 1 a periodic E-inclusion is associated to
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Fig. 11. Top view of the periodic E-inclusion in Fig. 10. As in Fig. 10 only half
of the inclusion is shown.

matrices K and volume fractions Θ. In general periodic E-inclusions having
N ′ ≤ N distinct matrices in K can be used to solve problems for (N ′ +
1)-phase composites. For two-phase composites we need only periodic E-
inclusions with K = {Q,Q, . . . ,Q}. Applications of periodic E-inclusions to
multi-phase composites are presented in a separate publication (Liu [35]).

4.1. Periodic Eshelby inclusion problems and effective properties of
two-phase composites

Our first observation is that some effective properties of composites hav-
ing one phase made with periodic E-inclusions can be easily calculated. We
consider a periodic two-phase composite defined by

L(x, Ω) =
{

L1 ∈ L x ∈ Ω,
L2 ∈ L x ∈ Y \Ω,

(4-1)

where the notation is as above, Ω ⊂ Y is measurable, Y ⊂ IRn is an open
unit cell, and the set L is the collection of all self-adjoint linear mappings
L̂ : IRm×n → IRm×n that satisfy

L̂ > 0 or
X · L̂X > 0 ∀XT = X 6= 0 and X · L̂X = 0 ∀XT = −X. (4-2)
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Note that L1 and L2 need not satisfy the full symmetries of linear elasticity
tensors. The benefit of this general setting is that several problems including
the conductivity problem can be treated simultaneously. Throughout this
section the periodicity and unit cell Y are fixed.

Consider the minimization problem

J∗(L, F, Ω) = min
{

1
2

∫
−

Y

(∇v + F) · L(x, Ω)(∇v + F)dx : (4-3)

v ∈ W 1,2
per(Y ; IRm)

}
.

Physically, in the case of linearized elasticity J∗(L, F, Ω) is the elastic en-
ergy density induced by an applied average strain F ∈ IRm×n. The effective
tensor Le(Ω) is defined as (Christensen [8])

1
2
F · Le(Ω)F = J∗(L, F, Ω) ∀F ∈ IRm×n. (4-4)

From standard arguments in the calculus of variations (Evans [14]), a min-
imizer of problem (4-3) exists and necessarily satisfies the Euler-Lagrange
equation

{
div

[
L(x, Ω)(∇v + F)

]
= 0 on Y,

periodic boundary conditions on ∂Y.
(4-5)

We are interested in calculating the effective tensor Le(Ω). Problem (4-5)
is referred to as the inhomogeneous Eshelby inclusion problem in a periodic
setting (cf., equation (1-2)).

The relation between periodic E-inclusions and problem (4-5) can be
uncovered by adapting a well-known argument of Eshelby [13]. We begin
with the homogeneous Eshelby inclusion problem,

{
div

[
L2∇v + PχΩ

]
= 0 on Y,

periodic boundary conditions on ∂Y,
(4-6)

where P ∈ IRm×n is given and v ∈ W 1,2
per(Y, IRm) is the unknown. Below,

we sometimes write v(x,P) to emphasize the (linear) dependence of v on
P. Further, motivated by the convenient property of ellipsoids employed by
Eshelby, we assume that Ω and P are such that there is a solution v of the
homogeneous problem (4-6) satisfying

∇v(x,P) = −(1− θ)RP on Ω, (4-7)

where θ = |Ω|/|Y | is the volume fraction of the inclusion, and the linear
mapping

RP =
−1

1− θ

∫
−

Ω

∇v(x,P)dx (4-8)
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is self-adjoint and depends on Ω (for the self-adjointness, see equation (4-30)).
From equations (4-6) and (4-8), it follows that
∫
−

Y

∇v(x,P) · L2∇v(x,P)dx = θ(1− θ)P ·RP ≥ 0 ∀ P ∈ IRm×n. (4-9)

Together with equation (4-7) and following the Eshelby’s argument, we now
observe that a solution of problem (4-6) also solves problem (4-5) under
restrictions given below. To see this, let us formally rewrite equations (4-6)
and (4-5) in a less concise form as





div[L2∇v] = 0 in Y \Ω,
div[L2∇v] = 0 in Ω,
[[L2∇v + PχΩ ]]n = 0 on ∂Ω,

(4-10)

and




div[L2∇v] = 0 in Y \Ω,
div[L1∇v] = 0 in Ω,
[[L(x, Ω)(∇v + F)]]n = 0 on ∂Ω,

(4-11)

respectively, where [[ · ]] denotes the jump across the ∂Ω. By matching the
jump conditions in (4-10) and (4-11), direct calculations show that if v
satisfies all equations in (4-10) and equation (4-7), then v also satisfies all
equations in (4-11) for F satisfying

MLF = (1− θ)MLRP−P, (4-12)

where ML = L2 − L1. Properly interpreted, this formal argument can be
made rigorous. More specifically, the weak form of (4-6) is

∫
−

Y

(L2∇v + PχΩ) · ∇wdx = 0 ∀ w ∈ W 1,2
per(Y ; IRm). (4-13)

By equations (4-7) and (4-12), equation (4-13) can be rewritten as
∫
−

Y

[L2∇v − ML(∇v + F)χΩ ] · ∇wdx = 0 ∀ w ∈ W 1,2
per(Y ; IRm),

which is exactly the weak form of (4-5). Also, the energy of the inhomoge-
neous problem (4-5) can be conveniently written as

2J∗(L,F, Ω) =
∫
−

Y

(∇v + F) · L(x, Ω)(∇v + F)dx

=
∫
−

Y

F · L(x, Ω)(∇v + F)dx

=
∫
−

Y

F · L2Fdx−
∫
−

Y

F · ML(∇v + F)χΩdx

= F · L2F + θP · F, (4-14)
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where F and P are related by equation (4-12).
As emphasized above, equation (4-7) is not true unless the inclusion Ω

is very special. We now show that periodic E-inclusions given by Theorem 3
are indeed such special inclusions in many interesting situations. First we
explain the relation between the scalar and vector-valued problems.

Lemma 1. Let u ∈ W 2,2
per(Y ) be a solution of problem

{
∆u = θ − χΩ on Y,

periodic boundary conditions on ∂Y.
(4-15)

Denote by δij (i, j = 1, · · · , n) the components of the identity matrix I ∈
IRn×n. If m = n ≥ 1, L2 ∈ L (cf., (4-2)), and

(L2)piqj = µ1δijδpq + µ2δpjδiq + λδipδjq, (4-16)

then

v(x,P) =
P∇u(x)

λ + µ1 + µ2
(4-17)

solves problem (4-6) for P = I. If µ2 +λ = 0 then v defined by (4-17) solves
problem (4-6) for every P ∈ IRn×n.

Proof. Note that L2 ∈ L implies the constants µ1, µ2 and λ necessarily
satisfy µ1 ≥ µ2, µ1 + µ2 > 0 and λ > −µ1+µ2

n . Since (L2)piqj = µ1δijδpq +
µ2δpjδiq + λδipδjq, equation (4-6) can be formally written as

µ1(v)p,ii + (µ2 + λ)(v)q,qp + (P)pi(χΩ),i = 0. (4-18)

It is easy to verify by direct calculation that v defined in equation (4-17)
satisfies equation (4-18) if P = I. If µ2 +λ = 0 then v satisfying (4-17) also
satisfies equation (4-18) for all P ∈ IRn×m. This formal calculation can be
made rigorous since solutions of equation (4-15) are in W 2,2

per(Y ).

Now we note that if Ω is a periodic E-inclusion specified by equa-
tion (2-19) with Q ∈ Q (cf., (2-18)), the second equation in (2-19) and
equation (4-17) imply that for any P ∈ {aI : a ∈ IR},

∇v(x,P) = − (1− θ)
µ1 + µ2 + λ

PQ on Ω (4-19)

and

RP =
PQ

µ1 + µ2 + λ
. (4-20)

If µ2 + λ = 0, equations (4-19) and (4-20) hold for all P ∈ IRn×n by
Lemma 1. Therefore, under the conditions specified in Lemma 1, if Ω is a
periodic E-inclusion then the homogeneous Eshelby problem can be used to
solve the inhomogeneous Eshelby problem.
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In applications to elasticity it is typically of interest to solve the inho-
mogeneous Eshelby inclusion problem (4-5) for given elasticity tensors L1

and L2, as this is a model of an elastic composite. The preceding result
shows that there is a periodic E-inclusion with any positive semi-definite
displacement gradient on the inclusion, for L2 having the form (4-16). The
volume fraction of this E-inclusion is independently assignable. The form of
L2 is sufficiently general to include all isotropic elasticity tensors with the
usual mild restrictions.

In applications to magnetism there are two problems of greatest in-
terest. In ferromagnetism one usually wants to solve the magnetostatic
equation div(−∇v + mχΩ) = 0 for given magnetization m ∈ IR3. This
problem corresponds to the homogeneous Eshelby inclusion problem with
m = 1, n = 3, P = m, L2 = I. The preceding result in the case µ2 = λ = 0
shows that for any given m ∈ IR3, any periodic E-inclusion (of any volume
fraction) has the property that the magnetic field −∇v is uniform on the
inclusion. Paramagnetic or diamagnetic materials are usually described by
a linear relation between magnetization and magnetic field, m = X (−∇v),
where X is the permeability tensor, and the governing equation is again
div((I + X )∇v) = 0 with the average field given. A two-phase composite
of such materials is described by the inhomogeneous Eshelby problem with
L1,2 = (I + X1,2). The latter also describes a two-phase composite of con-
ductive materials with L1,2 interpreted as the conductivity tensors and v as
the electric potential.

We now return to the general case. From Lemma 1, equations (4-4),
(4-14) and (4-19), direct calculations reveal the following explicit form for
the effective tensor of a two-phase composite with one phase occupying a
periodic E-inclusion.

Theorem 6. Consider a two-phase periodic composite described by the in-
homogeneous Eshelby inclusion problem (4-6) for n = m ≥ 1, with Le(Ω)
defined by (4-4) and

L(x, Ω) =

{
L1 ∈ L x ∈ Ω,

(L2)piqj = µ1δijδpq + µ2δpjδiq + λδipδjq ∈ L x ∈ Y \Ω,

where Ω is a periodic E-inclusion specified by equation (2-19) with Q ∈ Q
given.

(i) If µ2 + λ = 0, then

Le(Ω) = Lθ − θ(1− θ)ML(L̃θ + Y(Q))−1ML, (4-21)

where θ = |Ω|/|Y |, Lθ = θL1 + (1 − θ)L2, L̃θ = θL2 + (1 − θ)L1,
ML = L2 − L1, and the mapping Y(Q) in components is

(Y)piqj = −(L2)piqj + µ1δpq(Q−1)ij (4-22)

for invertible Q (see Remark 2 below).



New extremal inclusions and their applications to two-phase composites 29

(ii) If µ2 + λ 6= 0 and I ∈ R(ML) = {the range of the linear mapping ML},
then

F · Le(Ω)F = F · L2F (4-23)

+
θ(µ1 + µ2 + λ)

(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)
Tr(F)2

for all F ∈ IRn×n satisfying Tr(F) 6= 0 and

MLF
Tr(F)

=
(1− θ)MLQ− (µ1 + µ2 + λ)I

(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)
. (4-24)

Remark 2. The meaning of the term (L̃θ + Y(Q))−1 in (4-21) in the case
that Q is not invertible is given by

(L̃θ + Y(Q))−1 := lim
ε↘0

(L̃θ + Y(Q + εI))−1. (4-25)

Note that because of the restriction on F, equation (4-23) is not sufficient
to determine all components of the tensor Le(Ω). But even limited explicit
results on the effective tensor are rare in the theory of composites.

Proof. Let us first assume that µ2 + λ = 0 and that Ω is a periodic E-
inclusion corresponding to Q (cf., (2-18)). Milton ([43], page 397) has
shown that the effective tensor can be equivalently written as equation (4-21)
in terms of “Y-tensor”, which satisfies

Y
(∫
−

Ω

∇vdx
)

= −
∫
−

Ω

{
L1(∇v + F)

−
∫
−

Y

[L(x, Ω)(∇v + F)]dx
}
dy. (4-26)

From equations (4-12), (4-19) and (4-26), direct calculations show that Y is
given by (4-22) in the case that Q is invertible. If Q is not invertible, then
one still recovers equation (4-21) with the definition given in Remark 2.

If µ2 + λ 6= 0, Lemma 1 implies equation (4-7) holds for all P = aI
(0 6= a ∈ IR) and therefore equation (4-14) is valid for all F that satisfy
equation (4-12). Since I ∈ R(ML), equations (4-19) and (4-12) imply that

(µ1 + µ2 + λ)Tr(F) = a[(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)],

and hence equation (4-12) can be rewritten as equation (4-24). Also,

F ·P = aF · I = aTr(F)

=
(µ1 + µ2 + λ)Tr(F)2

(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)
, (4-27)

which, by equation (4-14), implies equation (4-23).
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Remark 3. The special form of L2 has played an important role in connect-
ing the scalar problem (4-15) and the vector problem (4-6). The restriction
on L2 in Lemma 1 and Theorem 6 can be relaxed to satisfy the weaker
restriction

(L2)piqj(k̂)i(k̂)j(k̂)q = κ(k̂)p ∀ |k̂| = 1 and L2 ∈ L, (4-28)

where κ > 0 is a constant. To show this, one notices that, by Fourier ex-
pansion (Khachaturyan [29]; Mura [45]), the gradient of the solution
of equation (4-6) can be represented as

[∇v]pi =
∑

k∈K\{0}

−1
(2π)n

χ̂Ω(k)Npq(k̂)(k̂)i(k̂)j(P)jq exp(ik · x), (4-29)

where K is the reciprocal lattice of lattice L, k̂ = k/|k|, Npq(k̂) is the inverse
of the matrix (L2)piqj(k̂)i(k̂)j , and χ̂Ω(k) is the Fourier transformation of
χΩ(x)

χ̂Ω(k) =
∫
−

Y

χΩ(x) exp(−ik · x)dx.

Therefore, the linear mapping R of (4-8) can always be represented as

(R)piqj =
∑

k∈K\{0}

1
θ(1− θ)(2π)n

Npq(k̂)(k̂)i(k̂)j (4-30)

∫
−

Ω

∫
−

Ω

exp(ik · (x− x′))dx′dx.

Similarly, the second gradient of the solution of problem (4-15) can be rep-
resented as

[∇∇u(x)]pi =
∑

k∈K\{0}

−1
(2π)n

χ̂Ω(k)(k̂)i(k̂)p exp(ik · x). (4-31)

By comparing (4-29) with (4-31), we note that that if equation (4-28) holds,
i.e.,

Npq(k̂) (k̂)q =
1
κ

(k̂)p ∀ |k̂| = 1,

then for P = I,

∇v =
∇∇u(x)

κ
. (4-32)

This shows that under the weaker restriction (4-16) on L2, the scalar prob-
lem (4-15) generates a solution of homogeneous Eshelby inclusion problem
(4-6).
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Remark 4. It is useful to notice that if L2 satisfies (4-28), the energy of the
homogeneous Eshelby inclusion problem (4-6) for P = I depends only on the
volume fraction of Ω. To see this, we notice by equations (4-8) and (4-32),

I ·RI =
−1

(1− θ)κ
I ·

[∫
−

Ω

∇∇udx
]

=
−1

κθ(1− θ)

∫
−

Y

χΩ∆udx =
1
κ

, (4-33)

which, together with (4-9), implies
∫
−

Y

∇v(x, I) · L2∇v(x, I)dx =
θ(1− θ)

κ
. (4-34)

In the context of linearized elasticity, equation (4-34) is referred to as the
Bitter-Crum theorem (Bitter [5]; Crum [9]; Cahn & Larche [7]). Also,
from the positive semi-definiteness of RI (cf., (4-30)) we have

RI =
1
κ
Q (4-35)

for some Q ∈ Q (cf., (2-18)).

4.2. Periodic E-inclusions as energy-minimizing structures for two-phase
composites

In this section, we consider the minimization/maximization problems
over measurable Ω with fixed volume fraction θ (cf., equation (4-3))

J l
θ(F) = inf

|Ω|/|Y |=θ

{
J∗(L,F, Ω) =

1
2
F · Le(Ω)F

}
(4-36)

and

Ju
θ (F) = sup

|Ω|/|Y |=θ

{J∗(L,F, Ω) =
1
2
F · Le(Ω)F

}
. (4-37)

If the infimum (resp. supremum) of problem (4-36) (resp. (4-37)) is attained
by Ω? (resp. Ω?)

1
2
F · Le(Ω?)F = J l

θ(F) (resp.
1
2
F · Le(Ω?)F = Ju

θ (F)),

then the region Ω? (resp. Ω?), corresponding to the optimal composite of
least (resp. greatest) moduli, is referred to as an energy-minimizing struc-
ture 3. Below we will show that periodic E-inclusions are energy-minimizing
for J∗(L,F, Ω) under suitable hypotheses on the tensors L1 and L2.

The energy J∗(L,F, Ω), as a function of Ω, is not amenable to the di-
rect method of the calculus of variations. We turn to an indirect method

3 If J∗(L,F, Ω?) = Ju
θ (F), from the duality of convex functions, Ω? minimizes

the corresponding complementary energy Ĵ∗(L,P, Ω) := sup{F ·P−J∗(L,F, Ω) :
F ∈ IRm×n}.
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which is by now standard. The idea is that, one first finds a structure-
independent bound, and then studies if the bound can be attained and, if
so, by what kind of structures. Among many methods of deriving bounds
on the effective properties of composites, the Hashin-Shtrikman variational
method (Hashin & Shtrikman [22, 23]) and the method of compensated
compactness (Tartar [50]) or translation (Lurie & Cherkaev [39]) have
proven to be useful in many situations. For a comprehensive treatment of
these methods, readers are referred to Milton [43].

For the moment, in addition to self-adjointness, we assume L1 and L2

are positive definite. To be able to relate the homogeneous Eshelby inclusion
problem (4-6) with the scalar problem (4-15), we again assume that m = n ≥
1 and (L2)piqj = µ1δijδpq + µ2δpjδiq + λδipδjq, where µ1 > µ2, µ1 + µ2 > 0
and λ > −(µ1 + µ2)/n. The restriction of L1 and L2 being positive definite
can be replaced by the weaker one that L1 ∈ L and L2 ∈ L, see Remark 5.

For a two-phase composite (4-1), let us recall Le(Ω) is defined by (4-4).
The lower and upper Hashin-Shtrikman variational principles (Milton &
Kohn [44]) are

(i) If L1 ≥ L2 > 0 and t ∈ (0, 1),

P · (Le(Ω)− tL2)−1P = min
B∈B(P)

{∫
−

Y

[∇vB · tL2∇vB (4-38)

+B(x) · (L(x, Ω)− tL2)−1B(x)
]
dx

}
,

(ii) If 0 < L1 ≤ L2 and t > 1,

P · (tL2 − Le(Ω))−1P = min
B∈B(P)

{∫
−

Y

[−∇vB · tL2∇vB (4-39)

+B(x) · (tL2 − L(x, Ω))−1B(x)
]
dx

}
.

The inclusion of the scalar t ensures that inverses are well-defined in the
context of L2 ≤ Le(Ω) ≤ L1 (resp., L1 ≤ Le(Ω) ≤ L2). In both equations
(4-38) and (4-39),

B(P) := {B(x) ∈ L2(Y, IRn×n) :
∫
−

Y

B(x)dx = P},

and vB ∈ W 1,2
per(Y ; IRn) satisfies

{
div[tL2∇vB + B(x)] = 0 on Y,

periodic boundary conditions on ∂Y.
(4-40)

In the terminology of Hashin and Shtrikman, we are using tL2 as the com-
parison material. For any P ∈ IRn×n, choose B(x) = 1

θPχΩ(x) in (4-38),
(4-39). Then, using (4-9), it follows that
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(i) if 0 < L2 ≤ L1, t ∈ (0, 1),

0 < (Le(Ω)− tL2)−1 ≤ [
1− θ

θt
R +

1
θ
(L1 − tL2)−1], (4-41)

(ii) if 0 < L1 ≤ L2, t > 1,

0 < (tL2 − Le(Ω))−1 ≤ [−1− θ

θt
R− 1

θ
(L1 − tL2)−1]. (4-42)

Note that, in equations (4-41) and (4-42), the tensor R is defined by equa-
tion (4-8), and hence by equation (4-33),

I ·RI =
1

(µ1 + µ2 + λ)
. (4-43)

To evaluate the bounds (4-41) and (4-42), the operation I·( )I is applied
to both sides of (4-41) and (4-42). If I ∈ R(ML) = {the range of ML =
L2 − L1}, from equation (4-43) we know the left-hand sides of (4-41) and
(4-42) are bounded as t → 1, which implies I ∈ R(Le(Ω) − L2). If the
inverse is understood as being restricted to R(Le(Ω)− L2), sending t → 1
we obtain the following structure-independent Hashin-Shtrikman bounds:

(i) if 0 < L2 ≤ L1,

I · (Le(Ω)− L2)−1I ≤ 1− θ

θ(µ1 + µ2 + λ)
− 1

θ
I · ML−1I, (4-44)

(ii) if 0 < L1 ≤ L2,

I · (L2 − Le(Ω))−1I ≤ − 1− θ

θ(µ1 + µ2 + λ)
+

1
θ
I · ML−1I. (4-45)

Note that 0 < L2 ≤ L1 implies Le(Ω)−L2 ≥ 0. From the duality of convex
functions, the first inequality in (4-44) can be rewritten as

sup
F∈IRn×n

{2I · F− F · (Le(Ω)− L2)F} = I · (Le(Ω)− L2)−1I (4-46)

≤ 1− θ

θ(µ1 + µ2 + λ)
− 1

θ
I · ML−1I =: c∗.

Clearly, c∗ 6= 0 since I ∈ R(Le(Ω) − L2) for any Ω with |Ω|/|Y | = θ.
Choosing F with Tr(F) = c∗, we have 2c∗ − F · (Le(Ω) − L2)F ≤ c∗, and
hence

F · (Le(Ω)− L2)F ≥ c∗ = Tr(F)2/c∗ (4-47)

=
θ(µ1 + µ2 + λ)

(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)
Tr(F)2.

For any F ∈ IRn×n, if Tr(F) = 0, the above inequality clearly holds. If
Tr(F) 6= 0, we apply the inequality to c∗F/Tr(F). Thus, we conclude that
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the inequality (4-47) holds for any F ∈ IRn×n. By a similar argument applied
to the second inequality in (4-45), we conclude that if 0 < L1 ≤ L2 and
I ∈ R(ML),

F · (Le(Ω)− L2)F ≤ θ(µ1 + µ2 + λ)
(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)

Tr(F)2. (4-48)

for any F ∈ IRn×n.
From Theorem 6, equations (4-47) and (4-48), we have

Theorem 7. Consider a periodic composite defined by

L(x, Ω) =

{
L1 x ∈ Ω,

(L2)piqj = µ1δijδpq + µ2δpjδiq + λδipδjq x ∈ Y \Ω,
(4-49)

where L1,L2 are self-adjoint and positive definite and I ∈ R(ML).

(i) If L1 ≥ L2, then for any |Ω|/|Y | = θ and any F ∈ IRn×n,

F · Le(Ω)F− F · L2F

≥ θ(µ1 + µ2 + λ)
(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)

Tr(F)2. (4-50)

Further, if Q ∈ Q and F with Tr(F) 6= 0 satisfy

MLF
Tr(F)

=
(1− θ)MLQ− (µ1 + µ2 + λ)I

(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)
, (4-51)

then inequality (4-50) holds as an equality with Ω being a periodic E-
inclusion corresponding to Q and volume fraction θ.

(ii) If L1 ≤ L2, then for any |Ω|/|Y | = θ and any F ∈ IRn×n,

F · Le(Ω)F− F · L2F

≤ θ(µ1 + µ2 + λ)
(1− θ)− (µ1 + µ2 + λ)Tr(ML−1I)

Tr(F)2. (4-52)

Further, if Q ∈ Q and F with Tr(F) 6= 0 satisfy equation (4-51), then
inequality (4-52) holds as an equality with Ω being a periodic E-inclusion
corresponding to Q and volume fraction θ.

Remark 5. For Theorem 7, the restriction of L1,2 being positive definite
can be replaced by L1,2 ∈ L (cf. (4-2)). To see this, let us consider equa-
tion (4-3). By replacing L(x, Ω) by Lε(x, Ω) = L(x, Ω) + εII (ε ∈ [0, 1],
(II)piqj = δijδpq), we define Le

ε(Ω) as for any F ∈ IRn×n,

F · Le
ε(Ω)F = min

v∈W 1,2
per(Y ;IRn)

∫
−

Y

(∇v + F) · Lε(x, Ω)(∇v + F)dx. (4-53)
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We now show

lim
ε→0

F · Le
ε(Ω)F = F · Le(Ω)F ∀F ∈ IRn×n. (4-54)

It is clear that it is sufficient to prove (4-54) for all F with |F| = 1. Let
vF be a minimizer of (4-53) with ε = 0 and |F| = 1. Since L1,2 belong to
L, using Korn’s inequality (Duvaut & Lions [11]) if necessary, we know
there exists M > 0, independent of F ∈ {|F| = 1}, such that

∫
−

Y

|∇vF + F|2dx ≤ M. (4-55)

Choosing v = vF in (4-53) for any ε > 0, we have

F · Le(Ω)F ≤ F · Le
ε(Ω)F ≤ F · Le(Ω)F + ε

[∫
−

Y

|∇vF + F|2dx
]
, (4-56)

where the first inequality follows directly from Lε(x, Ω) > L(x, Ω). From
equations (4-55)-(4-56) we obtain equation (4-54) by sending ε → 0.

Therefore, if L1,2 ∈ L, Theorem 7 applied to Lε(x, Ω) = L(x, Ω) + εII
imply that if I ∈ R(ML), L1 ≥ L2 and |Ω| = θ, then equation (4-50) reads

F · Le
ε(Ω)F ≥ F · L2F + ε|F|2 (4-57)

+
θ(µ1 + µ2 + λ + ε)

(1− θ)− (µ1 + µ2 + λ + ε)Tr(ML−1I)
Tr(F)2 ∀F ∈ IRn×n.

Also, equation (4-51) becomes

MLF
Tr(F)

=
(1− θ)MLQ− (µ1 + µ2 + λ + ε)I

(1− θ)− (µ1 + µ2 + λ + ε)Tr(ML−1I)
. (4-58)

Sending ε → 0 and making use of equation (4-54) and the continuity of the
right-hand sides of (4-57) and (4-58), we conclude that part (i) of Theorem 7
remains valid with the assumption that L1,2 ∈ L in place of L1,2 being
positive definite. The upper bound (4-52) is handled similarly.

Remark 6. It is well-known that there exist many structures that achieve
the optimal bounds (4-44) and (4-45) or (4-50) and (4-52). For instance,
coated spheres, confocal ellipsoids, multicoated spheres multi-rank lamina-
tions, and Sigmund’s constructions can achieve the optimal bounds (4-50)
and (4-52) in various cases, see Hashin & Shtrikman [21, 23]; Mil-
ton [42]; Lurie & Cherkaev [40]; Allaire & Kohn [1, 2, 3]; Grabovsky
& Kohn [19, 20]; Sigmund [49] and Gibiansky & Sigmund [16]. All
these constructions in general involve the assembly of some fundamental
structures at different length scales. In mathematical terminology, they are
minimizing sequences instead of minimizers. Quite differently, periodic E-
inclusions are indeed minimizers for energy function J∗(L,F, Ω). Moreover,
if restricted to periodic structures and assuming R(ML) ⊃ IRn×n

sym , we can
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show that the structures attaining the optimal bounds (4-50) or (4-52) must
be the periodic E-inclusions specified by equation (2-19) (Liu [35]).

Remark 7. If we apply linear transformations

x −→ x′ = Λ−1x and v −→ v′ = G−1v, (4-59)

to equation (4-5), we can generalize Theorems 6 and 7 with L2 of form

(L2)piqj = µ1(GT G)pq(ΛΛT )ij + µ2(GT ΛT )pj(GT ΛT )qi

+λ(GT ΛT )pi(GT ΛT )qj ,

where G, Λ ∈ IRn×n are any nonsingular matrices. These changes of vari-
ables give inclusions with constant field, but, in some cases, the inclusions
are not strictly E-inclusions. These changes of variables can be used to
change the periodicity and the values of the field ∇v on the inclusion.

Remark 8. From Remark 3 one can generalize Theorems 6 and 7 to the
case of L2 satisfying equation (4-28). The linear transformations (4-59) can
be applied to these L2 to further generalize Theorems 6 and 7.

Remark 9. Consider two isotropic elasticity tensors (L2)piqj = µ2δijδpq +
µ2δpjδiq +λ2δipδjq and (L1)piqj = µ1δijδpq +µ1δpjδiq +λ1δipδjq with Lamé
moduli µ2 ≤ µ1 and λ2 < λ1. The volume fraction of material L1 is fixed
at θ and we denote by Le

θ the effective elasticity tensor of the composite.
Equations (4-50) and (4-52) imply that for any F ∈ IRn×n

sym ,

F · L2F + θ
[ (2µ2 + λ2)Tr(F)2

(1− θ)− %

]
≤ F · Le

θ F (4-60)

≤ F · L1F + (1− θ)
[ (2µ1 + λ1)Tr(F)2

θ + %′

]
,

where % = n(2µ2+λ2)
2(µ2−µ1)+n(λ2−λ1)

and %′ = 2µ1+λ1
2µ2+λ2

%. Further, the lower bound
is sharp for all F satisfying Tr(F) 6= 0 and

aMLF = (1− θ)MLQ− (2µ2 + λ2)I (4-61)

for some Q ∈ Q and 0 6= a ∈ IR. Also, the upper bound is sharp for all F
satisfying Tr(F) 6= 0 and

aMLF = θMLQ + (2µ1 + λ1)I (4-62)

for some Q ∈ Q and 0 6= a ∈ IR. These bounds (4-60) have been previously
derived by Walpole [54]. In two dimensions and subjected to similar re-
strictions as (4-61) and (4-62), the bounds (4-60) has been proved to be
attainable by “Vigdergauz structures”, or “periodic E-inclusions” in our
terminology, and by confocal ellipses, see Grabovsky & Kohn [19, 20].

Remark 10. Consider two-phase composites with conductivity tensors 0 <
A1,A2 ∈ IRn×n

sym and MA = A2 −A1 < 0. We can adapt Theorems 6 and 7
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by setting (L2)piqj = δpq(A2)ij and (L1)piqj = δpq(A1)ij . After appropriate
linear transformations (cf., Remark 7) and some algebraic calculations, from
equations (4-44) and (4-45) we obtain

Tr(A2(Ae(Ω)−A2)−1) ≤ 1
θ
Tr(A2(A1 −A2)−1) +

1− θ

θ
,

Tr(A1(A1 −Ae(Ω))−1) ≤ 1
1− θ

Tr(A1(A1 −A2)−1)− θ

1− θ
.

These bounds, called the “trace bounds” in the literature, have been pre-
viously obtained by Milton & Kohn [44] and have been proved to be
attainable by Grabovsky [18].

5. Summary and discussion

We have shown the existence of special inclusions for which the overde-
termined problems (1-4)-(1-5) and (1-6)-(1-7) admit a solution. They are
constructed as the coincident set of a simple variational inequality with
respect to piecewise quadratic obstacles. These structures are called E-
inclusions based on their analogy with ellipsoids and their extremal proper-
ties for energy minimization problems in homogenization theory. Important
restrictions on the parameters which characterize a periodic E-inclusion,
namely, the matrices K and volume fractions Θ, have also been derived, see
equation (2-16). Numerical studies have revealed the diversity of periodic
E-inclusions. The same situation is expected for nonperiodic E-inclusions.

It is of interest in the above to know what are the restrictions on the sym-
metric matrices K = (Q1, . . . ,QN ) and volume fractions Θ = (θ1, · · · , θN )
for which we can find periodic E-inclusions. Let u ∈ W 2,2

per(Y ) be a solution of
(1-6) associated to a periodic E-inclusion. Using Lp estimates for the Laplace
operator we see that u is in fact bounded in W 2,p

per(Y ) for any 1 ≤ p < ∞
since ∆u is bounded in L∞per(Y ) (Gilbarg & Trudinger [17], page 235).
Then we can rescale it and get a sequence u(k)(x) = (1/k2)u(kx)χD(x)
for an open bounded domain D. The corresponding sequence of gradients
v(k)(x) = ∇u(k)(x) = (1/k)∇u(kx) is bounded in W 1,p(D, IRn) for any
1 ≤ p < ∞. The study of the gradient Young measure of the sequence v(k)

gives natural restrictions on K and volume fractions Θ. For this and other
purposes it is useful to define the concept of a sequential E-inclusion. A
sequential E-inclusion is a homogeneous gradient Young measure that is
generated by a sequence bounded in W 1,p(D) for any 1 ≤ p < ∞, has zero
center of mass, and satisfies

ν =
N∑

i=1

θiδQi + θ0µ, (5-1)

where θ1, · · · , θN ≥ 0, θ0 = 1−∑N
i=1 θi ≥ 0, θ0p0 = −∑N

i=1 θiTr(Qi), and
µ is a probability measure satisfying suppµ ⊂ {X ∈ IRn×n

sym : Tr(X) = p0}.
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These conditions are all satisfied by the gradient Young measure generated
by the rescaled sequence v(k) = ∇u(k). In particular, the Dirac masses at
Qi arise from the periodic E-inclusions and the condition Tr(X) = p0 arises
from the Poisson equation ∆u = p0 on the complementary set. From the
basic relation between gradient Young measures and quasiconvex functions
(Kinderlehrer & Pedregal [31, 32] ), we have that

∫

IRn×n

ψ(X) dν(X) ≥ ψ(0) (5-2)

for all quasiconvex functions ψ : IRn×n → IR. The notion of quasiconvexity
used here is the one appropriate for second gradient (Šverák [53]). In par-
ticular, we can show that, by similar arguments as in Allaire & Kohn [1],
equation (5-2) holds if ψ is quadratic and is rank-one convex for symmetric
rank-one matrices.

We now show that the previous restrictions (2-16) on K and Θ also follow
from equation (5-2). For any X ∈ IRn×n

sym , consider the quadratic function
ψ(X) = m · (Tr(X)X −X2)m for some m ∈ IRn. Direct calculations reveal
that ψ(X+λn⊗n) = ψ(X)+λ(m·Xm|n|2+Tr(X)(n·m)2−2(n·m)n·Xm)
is an affine function of λ for any n, m ∈ IRn and therefore is convex on
symmetric rank-one matrices. (In fact, ψ is a null Lagrangian in this second
gradient context.) An application of (5-2) to ±ψ shows that for a sequential
E-inclusion (5-1),

0 =
∫

IRn×n

(Tr(X)X −X2)dν(X) (5-3)

=
N∑

i=1

θi(Tr(Qi)Qi −Q2
i ) + θ0

∫

IRn×n

(Tr(X)X −X2)dµ(X).

Since the center of mass of ν is zero, we have

∫

IRn×n

Tr(X)Xdµ(X) = p0

∫

IRn×n

Xdµ(X) = p0[−
N∑

i=1

θiQi]/θ0. (5-4)

The last term in (5-3) can be bounded using Jensen’s inequality

∫

IRn×n

X2dµ(X) ≥
[ ∫

IRn×n

Xdµ(X)
]2

= [−
N∑

i=1

θiQi]2/θ2
0. (5-5)

Substituting equations (5-4) and (5-5) into (5-3), we obtain

N∑

i=1

[θ0Tr(Qi) +
N∑

j=1

θjTr(Qj)]θiQi ≥ θ0

N∑

i=1

θiQ2
i + [

N∑

i=1

θiQi]2,
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which is identical to equation (2-16). Of course, there are many other quasi-
convex functions that could be used in equation (5-2) that would evidently
give further restrictions on the K and Θ.

As shown in forthcoming work on optimal bounds for multiphase com-
posites (Liu [35]), the concept of a sequential E-inclusion is useful to char-
acterize the microstructures that attain the Hashin-Shtrikman bounds. The
result, in its strongest form, states that under restrictions on L1, . . . ,LN of
the type given here, a microstructure attains the Hashin-Shtrikman bounds
if and only if it is a sequential E-inclusion.

E-inclusions can be generalized to other situations. For instance, if an
open bounded domain D is considered, special structures such that the
overdetermined problem





∆u =
∑N

i=0 piχΩi
on D,

∇∇u = Qi on Ωi ∀ i = 1, · · · , N,

u = 0 on ∂D

admits a solution can be defined and constructed by the counterpart of
variational inequality (2-1). It is expected that these special structures have
similar extremal properties as periodic E-inclusions with respect to the cor-
responding energy minimization problem. It is also clear that the variational
inequality (2-1) can be used to construct special inclusions based on an ob-
stacle φper that is not a piecewise quadratic function.

E-inclusions can also be used to solve problems on the effective behavior
of nonlinear composites. For instance, let us consider a periodic two-phase
nonlinear composite with effective properties defined by

Ie(e) = min
w∈W 1,2

per(Y )

∫
−

Y

I(∇w + e,x)dx ∀ e ∈ IRn, (5-6)

where the energy function I : IRn × IRn → IR is given by

I(e,x) =

{
I1(e) if x ∈ Ω,

e · Ie if x ∈ Y \Ω.

Here I1 : IRn → IR, describing the nonlinear phase on Ω, is a strictly
convex but not necessarily quadratic function, and the identity matrix I
describes the linear phase on Y \Ω. If Ω is a periodic E-inclusion with matrix
Q ∈ Q and volume fraction θ (cf., (2-19)), the minimization problem (5-6)
is explicitly solvable in terms of a linear combination of functions satisfying
(2-19) in spite of the nonlinearity of I1(e). Essentially, the fact that ∇w is
constant on Ω reduces the nonlinear part of the problem to an algebraic
equation. This observation (for ellipsoids) goes back to Hill [24].

Structures that look a lot like E-inclusions are apparently seen in na-
ture. For instance, Fig. 12 is a dark-field electron micrograph of Ni3Ge
precipitates in late stage coarsening of binary Ni-Ge alloys. The experimen-
tal conditions are described in Kim & Ardell [30]. The transformation
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Fig. 12. Dark-field transmission electron micrographs of the Ni3Ge precipitates,
see Kim & Ardell [30] for the experimental conditions.

strain is dilatational in this case and the transformation is cubic to cubic.
Precipitates in this and other coarsening nickel-based superalloys form ap-
proximately periodic arrays and have shapes like those seen in Fig. 7. Like
periodic E-inclusions, these precipitates become more cuboidal at higher
volume fraction. In late stage coarsening it is accepted that the minimiza-
tion of elastic energy, both with respect to fields as well as shapes, governs
the evolution of microstructure (Jou, Leo & Lowengrub [25]; Thorn-
ton, Akaiwa & Voorhees [51]). In addition, interfacial energy plays a
role in the evolution, but its influence is less important at the later stages of
coarsening. E-inclusions are likely to be favored in the evolution of precip-
itates in these alloys since they are optimal shapes with respect to elastic
energy, as shown in Section 4. To make this possible connection between E-
inclusions and Ni3Ge precipitates quantitative, one should find an estimate
of the effect of the presence of interfacial energy on shape. Also, one would
also need to check that the elasticity tensor of the matrix phase exceeds
that of the precipitate (or generalize our results) and generalize our results
to allow a cubic matrix phase.

Finally we remark that the analogy between ellipsoids and periodic E-
inclusions is not perfect in the sense that ∇v is uniform on the ellipsoid
in problem (1-1) for any matrix P, whereas periodic E-inclusions have this
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property only for the matrix P = I, unless the tensor L2 has a special form.
Nevertheless, we anticipate periodic E-inclusions can find wide applications
in the theories of micromechanics, composites and fracture mechanics as
does the ubiquitous Eshelby’s solution in these fields. In the meantime, it
is interesting to know if the solution ∇v of problem (4-6) is uniform on a
periodic E-inclusion for other matrices P,L2, subject to some additional
assumption, say, the periodic E-inclusion is simply connected in one unit
cell. This could be explored numerically.
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