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time's arrow and Boltzmann's entropy*
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I discuss Boltzmann's resolution of the apparent paradox: microscopic dynamics are
time-symmetric but the behavior of macroscopic objects, composed of microscopic con-
stituents, is time-asymmetric. Noting the great disparity between macroscales and microscales
Boltzmann developed a statistical approach which explains the observed macroscopic be-
havior. In particular it predicts the increase with time of the "Boltzmann entropy", SB(^), for
"almost all" microscopic states X. of a nonequilibrium macroscopic system. The quantitative
description of the macroscopic evolution, and ipso facto the compatibility between the
macroscopic descriptions and microscopic descriptions, is illustrated by an example: the
rigorous derivation of a diffusion equation for the typical macroscopic density profile of a
Lorentz gas of independent electrons moving according to Hamiltonian dynamics. The role of
low entropy "initial states" is emphasized.

1. Introduction

For the purpose of this article, my notion of space-time is essentially the
Newtonian one in which time symmetric basic laws connect the states of a
physical system, possibly of the whole universe, at different instants of time.
This of course does not take account of relativity, special or general, and is
therefore certainly not the whole story. Still I believe that the phenomenon we
wish to explain, namely the time asymmetric behavior of spatially localized
macroscopic objects, is for all practical purposes the same in a non-relativistic
universe. I will therefore focus here on idealized versions of the problem in the
simplest context, i.e. look at the evolution in time of a macroscopic system
governed by non-relativistic Hamiltonian dynamics. The role of quantum
mechanics will be discussed briefly at the end.

The analysis I present here is certainly not novel. It consists mostly of
restatements and updatings, in contemporary language, of something im-
portant that Boltzmann discovered about the microscopic origin of macroscopic
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behavior [1]. Boltzmann's ideas eliminate the need for devising new theories or
new equations, which are not driven by really novel experiments or insights, for
the sole purpose of dealing with the "problem of irreversibility".

Boltzmann's very original ideas were, perhaps not surprisingly, difficult to
grasp for some of his contemporaries. What is surprising is that some of the
confusion created by these misunderstandings, the so-called "controversies'
with Zermelo and others still persist at present. There is really no excuse for
this considering the clarity of Boltzmann's responses and later writings [1]. I
strongly recommend reading these papers-they are absolutely beautiful. I only
hope that my presentation here retains some of that clarity. In preparing it I
have benefited much from refs. [2-5]. I highly recommend these books, and of
course ref. [1] as well as Boltzmann's other works [6], for further reading on
this subject.

Boltzmann's statistical theory of the nonequilibrium (time asymmetric,
irreversible) behavior of macroscopic systems is based on associating to each
macrostate M and thus to each microstate X which gives rise to M (=M(X)) a
(Boltzmann) entropy SB(M(X)). This entropy coincides (up to terms negligible
in the size of the system), with the ensemble (Gibbs) entropy S G ( p ) when the
ensemble density p is one of local equilibrium-they are both equal then to the
macroscopic thermodynamic entropy. For such ensembles there is essentially
no distinction between average and typical values of macroscopic variables.
However, unlike SG, which does not change in time for an isolated system,
even when the system is not in equilibrium, SB typically increases in a way
which explains and describes qualitatively the evolution towards equilibrium of
such systems. This means that SG, and other quantities like it, are simply not
the right objects to look at in the latter context. The constancy of SG for
isolated systems and the resulting disagreement with SB is therefore not a
"problem" of irreversibility or of anything else (despite what is written in many
textbooks and articles). It simply reflects the fact that the distinction between
microscopic and macroscopic behavior, which is both the problem and the
essential ingredient in its resolution, is not captured by SG. It is however
contained in the very definition of SB, whose increase provides information
about the qualitative behavior of macroscopic systems.

The quantitative description of the macroscopic evolution is given by hydro-
dynamical-type equations which can be derived (explicitly, in some cases) from
the microscopic dynamics by utilizing the collective aspect of macrobehavior,
i.e. as a law of large numbers arising from the very large macro/micro-ratio
[7-9]. These equations describe the typical irreversible behavior of individual
macroscopic systems, not just that of ensemble averages. It is this time-
asymmetric behavior, manifested in a single typical evolution of macroscopic
system, which distinguishes macroscopic irreversibility from the chaotic be-
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havior of systems with but a few degrees of freedom having good ergodic
properties, e.g. two hard spheres in a box.

On the other hand the instabilities induced by "locally" chaotic behavior do
play a role in determining the nature of the macroscopic evolution. An
example of this is provided by the Lorentz gas consisting of a macroscopic
number of non-interacting particles moving among a periodic array of fixed
convex scatterers (with finite horizons). Combining results of Bunimovich and
Sinai [10], which depend on the "deterministic chaos" in single scatterings,
with some work of Lebowitz and Spohn [11], one can derive rigorously a
diffusion equation for typical macroscopic particle density profiles of this
system in the hydrodynamic scaling limit (macro/micro-ratio goes to infinity).

I want to emphasize again however that the central role in time asymmetric
behavior is played by the very large number of degrees of freedom involved in
the evolution of macroscopic systems. It is only this which permits statistical
predictions to become "certain" ones for typical individual realizations, where,
after all, we actually observe irreversible behavior. This typicality is very
robust - the essential features of macroscopic behavior are not dependent on
any precise assumptions, such as ergodicity, mixing or "equal a priori prob-
abilities", being strictly satisfied by the statistical distributions. The latter are in
fact, for our purposes, nothing more than mathematical tools for describing
individual macroscopic behavior.

2. Qualitative aspects of macroscopic behavior

Consider an isolated macroscopic system evolving in time, as exemplified by
the schematic macroscopic snapshots of a fluid (or solid) in the four frames in
fig. 1. The dots in this figure represent pictorially some excess density variable
of the fluid (relative to a baseline represented by the blank space) at different
times during the undisturbed evolution of the system. For concreteness let the
bottom half of the system in fig. la be hotter than the top half (higher kinetic
energy density) while in fig. Id the temperature is uniform. Fig. 2 shows
schematic graphs of the same profiles. The question is to identify the time
order in which the sequence of snapshots was taken.

The "obvious" answer, based on experience, is that time increases from left
to right - any other order is clearly impossible. Now it would be very simple
and nice if this answer could be shown to follow directly from the microscopic
laws of nature. But this is not the case, for the microscopic laws, as we know
them, tell a different story: if the sequence going from left to right is a
permissible one, so is the one going from right to left. This is most easily seen
in classical mechanics and so I shall use this language for the present. I believe
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a b c d
Fig. 1. Snapshots of macroscopic density profiles on an isolated system at four different times.

m (z)

Fig. 2. Plot of the macroscopic density field m(z) for the snapshots in fig. 1.

that the situation is similar in quantum mechanics and will briefly discuss that
here, in section 5, cf. ref. [12].

2.1. The problem of time asymmetry

The complete microscopic (or micro) state of an isolated classical system of
N particles can be represented by a point X in its phase space F, X =
(/•,, i>, , r2, v2, . . . , rN, i»v), /-, and vf being the position and velocity of the /th
particle. The Hamiltonian time evolution of this microstate is described by a
flow T,, i.e. if X(tn) is the microstate at time t(), then the state at time t} is given
by

X(tl)=T,i_,ttX(tQ).

Consider now states X(t0) and TTX(tt}) = X(t(l + T), r > 0. Reversing (phys-
ically or mathematically) all velocities at time f ( ) + T, we obtain a new micro-
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scopic state, which we denote by RX(ta + T). If we now follow the evolution for
another interval T we find that the new microstate at time r() + 2r is just the
state at X(t()) with all velocities reversed, i.e. TTRTTX(ta) = RX(ta).

Let us return now to the sequence of snapshots in fig. 1. These clearly do not
specify the microscopic state X of the system; rather they represent macro-
scopic states, which we denote by M. To each macrostate M there corresponds
a set of microstates making up a region FM in the phase space 7". Thus if we
were to divide the box in fig. 1 into say a million little cubs then the macrostate
M in each frame could simply specify (within some tolerance) the kinetic
energy Kj of particles in cube j, j = 1, . . . , 106. In order to properly specify the
region FM we need to know also the total energy of this system E, the total
particle number N, and any other (macroscopically relevant) constants of the
motion (also within some tolerance).

While this specification of the macroscopic state clearly contains some
arbitrariness, this need not concern us right now. What is important is that the
snapshots shown in the figure would remain unchanged if we reversed all the
velocities of the particles so that if X £ FM then also RX E FM. Now we see the
problem with our definite assignment of a time order to the snapshots in the
figure: going from a macrostate M, at time t,, to another macrostate M2 at time
t2 = r, + T, t >0, means that there is a microstate XE. FM, for which TrX =
y £ Tw,, but then also RYE.FM^ and TTRY = RXEFM>. Hence the snapshots
depicting Ma, a = a, b, c, d, in fig. 1 could, as far as the laws of mechanics
(which we take here to be the laws of nature) go, correspond to a sequence of
times going in either direction.

It is thus clear that our judgement of the time order in fig. 1 was not based
on the dynamical laws of evolution alone; they permit either order. Rather it
was based on experience: one direction is common and easily arranged, the
other is never seen. But why should this be so?

2.2. Boltzmann's answer

The answer given by Boltzmann's statistical theory starts by associating to
each macroscopic state M and thus to each phase point X (through the M(X)
which it defines) a "Boltzmann entropy", defined (up to multiplicative and
additive constants) as

sB(M) = iog|rj, (i)
where \FM\ is the phase space volume associated with the macrostate M, i.e.
\FM\ is the integral of the Liouville volume element (11,1 j dr,. dr,.) over FM.
Boltzmann's stroke of genius was to make the connection between this
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microscopically defined function SB(M) and the fact or expectation than when
a macroscopic constraint is lifted in a system, as when an isolating wall dividing
two halves of a box (such as the one in fig. 1) is removed, the dynamical
motion of the microscopic phase point will "more likely" wander into newly
opened regions of Ffor which FM is large than into those for which FM is small.
Thus if we monitor the time evolution of the macrostate M(t) (short for
M(X(t))) we expect it to change is such a way that SB(M(t)) will "typically"
increase as time increases.

To see that this expectation coincides with and in fact explains the observed
behavior of macroscopic systems Boltzmann made a direct connection between
SR(M) and the thermodynamic entropy of Clausius, Seq, which is a macroscopi-
cally defined, operationally measurable (up to additive constants), extensive
function of macroscopic systems in equilibrium. For a system in equilibrium at
a given energy E and volume V,

S c q (E,K,yV) = yVs e q(e,n)-SB(M e q), e = E/N, n = N/V, (2)

where Meq(E, V, N) is the macrostate corresponding to the system in equilib-
rium at a given E and V. By — we mean that for large N, when the system is
really macroscopic, the equality holds up to negligible terms when both sides of
(2) are divided by N and the additive constant, which is independent of e and
n, is suitably fixed. (We require here that the number of cells used to define
M should grow more slowly than N.) For a lucid discussion of SB see ref. [3]
and also refs. [13,14].

Boltzmann's great insight thus not only gave a microscopic interpretation of
the mysterious thermodynamic entropy of Clausius, it also gave a natural
generalization of entropy to nonequilibrium macrostates M and with it a
plausible explanation of the origin of the second law of thermodynamics - the
formal expression of the time-asymmetric evolution of macroscopic states
occurring in nature. In particular it explains why the sequence going from left
to right in fig. 1 under the action of the system's Hamiltonian is natural; if we
posit an initial state Ma where the two parts of the box are in equilibrium at
different temperatures then left to right corresponds to a sequence of M's with
increasing SB(M), and hence FM, which is highly likely. Going the other way
requires the initial X to evolve in a way which would make SB(M) and thus FM

decrease, which is highly unlikely.
To understand why we never see the unlikely case it should be noted that

when the system in fig. 1 is really macroscopic, say one mole in a one liter
container, with a temperature difference between the two halves in fig. la of
several degrees, the ratio of FM of the unconstrained system and the one
constrained in each half of the container (roughly \FM \/\FM |) is of order 10
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The "probability" of seeing the unlikely evolution is then roughly the inverse
of this number. This also explains why, for systems like these, we do not have
to worry too much about the precise specification of macrostates. We thus have
"almost" a microscopic derivation of the second law.

2.3. The use of probabilities

Boltzmann's ideas are, as Ruelle [5] says, at the same time simple and rather
subtle. They introduce into the "laws of nature" notions of probability, as
indicated by the use of such words as "likely", "expected", etc., which,
certainly at that time, were quite alien to the scientific outlook. Physical laws
were supposed to hold without any exceptions, not just almost always. It
appears to me that even now Boltzmann's seminal ideas are still not universally
understood. Let me try to explain how I understand them.

Let us first consider the system in fig. la to be in equilibrium in each half of
the box - insulated from the other half by a wall. Observations and analysis
show that, for a system in equilibrium, the values of certain types of phase
functions f(X) such as the number of particles contained in some subset of the
volume, their kinetic energy in that region, will fluctuate in time about some
stationary mean value. The single- and multi-time statistics of such observa-
tions (obtained by independent repetitions of a specified experiment or situa-
tion) will be stationary in time - that is more or less what is meant by the
system being in equilibrium. Furthermore the relative magnitude of these
fluctuations will decrease as the size of the region increases. A quantitative
theory of this fluctuation behavior can be obtained by the use of the Gibbs
microcanonical ensemble [3,6,14]. This ensemble assigns probabilities to find-
ing the microstate X of an equilibrium system with energy E and volume V in a
phase space region A proportional to the volume of A. The normalizing factor
for these probabilities is the volume of the energy surface - which as indicated
later in (5) is, for macroscopic systems, essentially the same as |FM . (As is
well known the other commonly used Gibbs ensembles, canonical, grand-
canonical, etc., are equivalent in their predictions to the microcanonical one
for relevant macroscopic observables and so need not be considered separately
here.)

These probabilities can be interpreted either subjectively or as a statement
about empirical statistics. Whatever the interpretation we can, using the
microcanonical ensemble, compute the probability that the lifting of a con-
straint from a system in equilibrium will result in a particular evolution of the
macrostates. In particular it specifies the notion of typicality: a certain behavior
is typical if the set of microscopic states X in FM for which it occurs comprises a
region whose volume fraction goes to one as N grows. Thus going back now to
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the time ordering of the macrostates in fig. 1 we can say that the sequence
going from left to right is typical for a phase point in FM while the one going
from right to left has probability approaching zero with respect to a uniform
distribution in PM , for large N.

It is clearly important for our consideration that the microcanonical ensem-
ble is, by Liouville's theorem, time invariant under the dynamics. For ergodic
systems one can regard these probabilities as representing the fraction of time
(over a sufficiently long time period) which the system spends in A. For such
systems the microcanonical ensemble is the only stationary measure whose
probability density is absolutely continuous with respect to the projection of
Liouville measure on the energy surface in P [3,15]. Given the ubiquitous
presence of deterministic chaos, it is reasonable to assume that real macro-
scopic systems are effectively ergodic.

It should be noted however that there is no experimental evidence that this
assignment of equal a priori probabilities to equal phase space volumes (which
is also the classical limit of the equal a priori probability assignment to each
quantum state), compatible with the macrostate of an equilibrium system
specified with a suitable tolerance, exactly describes empirical statistics for
every arbitrary small phase space region (or quantum state). How could we tell
if the assumption of equal a priori probabilities for equilibrium systems failed
for a volume fraction which vanishes rapidly as N increases. Even more to the
point, we could not tell a uniform density from a non-uniform one if the
domains on which the density differed were sufficiently entangled on the
energy surface of a macroscopic system. There is clearly no way we can
experimentally analyze the behavior of macrosystems with sufficient accuracy
to detect this sort of failure of uniformity. There is also no theoretical necessity
for such an assumption in determining the ordering of the sequence in fig. 1.
Since the behavior of S B ( M ) is typical for points X in PM and atypical for
points in PM the ordering would not change if we used any other smooth
distribution, e.g. one having a piecewise continuous density p ( X ) , inside PM or
FM . Of course when we make mathematical models we naturally want to keep
them structurally as simple as possible.

2.4. Irreversibility and macroscopic stability

Mechanics itself does not of course rule out having a microstate X, by
velocity reversal or otherwise, for which SB(M(X,)) would be decreasing as t
increases. We could, for example, in principle reverse all velocities of the
system in figs. Ib, Ic or Id, although it seems effectively impossible to do so in
practice: for some reason (possibly profound), human beings can, as Leggett
puts it, "prepare" but not "retropare" states [16]. However even if we
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managed to do so, as occurs (at least partially) in spin echo experiments [17],
we would not expect to see the sequence in fig. 1 go from right to left. This is
related to the following observations: the macroscopic behavior of a system
with microstate Y in the state Mb coming from Ma which is typical with respect
to rM , i.e. such that T TY is typical of FM , and for which therefore
SB(M(T_TY)) < SB(M(Y)), is stable against perturbations as far as its future is
concerned but very unstable as far as its past (and thus the future behavior of
RY) is concerned. That is, the macrostate corresponding to TtY is stable for
t > 0 but unstable for t < 0. I am thinking here primarily of situations where the
equations describing the macroscopic evolution, e.g. the Navier-Stokes equa-
tions, are stable. In situations, such as the weather, where the forward
macroscopic evolution is chaotic, i.e. sensitive to small perturbations, cf. ref.
[5], all evolutions will still have increasing Boltzmann entropies in the forward
direction. For the backward evolution of the microstates however, the un-
perturbed one has decreasing 5B while the perturbed ones have (at least after a
very short time) increasing SK. So even in macroscopically "chaotic" regimes
the forward evolution of M is much more stable than the backward one.

This behavior can be understood intuitively by making the natural assump-
tion that almost any perturbation of Y will tend to make the microstate more
and not less typical of FM . It will thus not interfere with the unperturbed
behavior of increasing SB for all t >0. The forward evolution of RY is on the
other hand towards a smaller phase space volume which requires "perfect
aiming". It can therefore be expected to be derailed by even smaller impreci-
sions in the reversal and/or tiny random outside influences. This is somewhat
analogous to those pinball machine type puzzles where one is supposed to get a
small metal ball into a particular small region. You have to do things just right
to get it in but almost anything you do gets it out into larger regions. For the
macroscopic systems we are considering the disparity between relative sizes of
the comparable regions in the phase space is unimaginably larger. The be-
havior of such systems will therefore be as observed, in the absence of any
"grand conspiracy".

The difference between the stability of the macroscopic evolution in the
forward, entropy-increasing, direction and its instability in the reverse direction
is very relevant to understanding the behavior of systems which are not
completely isolated - as is the case in practice with all physical systems. In the
direction in which the motion is stable this lack of complete isolation interferes
very little with our ability to make predictions about macroscopic behavior. It
however almost completely hampers our ability to actually observe "back
motion" for any extended time following the application of some type of
velocity reversal as in the case of spin echo experiments [17]. After a very short
time in which SB decreases the imperfections in the reversal and the "outside"
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perturbations, such as one coming from a sun flare, a star quake in a distant
galaxy (a long time ago) or from a butterfly beating its wings nearby [5], will
make it increase again. The same happens also in computer simulations where
velocity reversal is easy to accomplish but where roundoff errors play the role
of perturbations.

3. Initial conditions

I hope that I have convinced you by now that Boltzmann's explanation of
why macroscopic systems evolve in a way which makes SB increase is very
reasonable. I am afraid however that you might wake up in the middle of the
night and start worrying and then arguing with me in a form expressed by
Schrodinger as follows [18]: "First, my good friend, you state that the two
directions of your time variables, from — / t o +t and from +t to —t are a priori
equivalent. Then by fine arguments appealing to common sense you show that
disorder (or 'entropy') must with overwhelming probability increase with time.
Now, if you please, what do you mean by 'with time'? Do you mean in the
direction - / to +r? But if your interferences are sound, they are equally valid
for the direction +t to —t. If these two directions are equivalent a priori, then
they remain so a posteriori. The conclusions can never invalidate the premise.
Then your inference is valid for both directions of time, and that is a
contradiction."

Put in terms of our example in fig. 1 the point is that on the one hand if we
just consider the system with a general non-uniform macroscopic density
profile such as shown in fig. Ib, then experience shows that we can predict that
its future behavior will be like A/c by assuming that its microstates are typical of
FM , i.e. of local equilibrium consistent with Mh. On the other hand if we use
such a local equilibrium state to compute via Newton's equations the antece-
dent macrostate of a typical micro state X £ FM , we get also a macrostate like
Mc and not anything resembling Ma. This is of course obvious and inevitable:
since the local equilibrium ensemble corresponding to the macrostate Mb, at
some time /, gives equal weight to microstates X and RX it must make the
same prediction for t - T as for t + T.

We are thus apparently back to something akin to our old problem: Why can
we use statistical arguments based on phase space volume (e.g. local equilib-
rium type ensemble) considerations to make predictions about the future
behavior of macroscopic systems but not to make retrodictions? Now in the
example of fig. 1 if indeed the macrostate Mb came from Ma, and we take its
microstate at that earlier time to be typical of equilibrium with a constraining
wall, i.e. of FM , then its microstate corresponding to Mb is necessarily atypical
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of points in FM since by Liouville's theorem the set of all such phase points has
at most volume \FM , which is much smaller than \FM \. Nevertheless its. future
but not its past behavior, as far as macrostates are concerned, will be similar to
that of typical points taken from FM . It is for this reason that we can use
autonomous equations, like the diffusion equation, to predict future behavior
of real macroscopic systems without worrying about whether their microstates
stay typical for their macrostates. They will certainly not be so after the system
has been fully isolated for some time while its SB has been increasing. (The fact
that local equilibrium ensembles do not remain such was a great worry to
Krilov [19] but it does not appear to me to be a real problem.) Of course in the
real world the inevitable small outside perturbations discussed before might in
fact push the system towards typicality, particularly if we wait long enough,
and have come to an equilibrium macrostate.

The above analysis thus explains why, if shown only the two snapshots Mh

and Mc and told that the system was isolated for some time interval which
included the time between the two observations, our ordering would be Mh

before Mc and not vice versa. This would in fact be based on there being an
initial state like Ma, with even lower entropy than Mh, for which the microstate
was typical. From such an initial state we get a monotone behavior of SB(t)
with the time ordering Ma, Mh and Mc. If on the other hand we knew that the
system in fig. 1 had been completely isolated for a very long time, compared to
the hydrodynamic relaxation time of the system before the snapshots in fig. 1
were taken then (in this very very very unlikely case) we would have no basis
for assigning an order to the sequence since fluctuations from equilibrium are
typically symmetric about times in which there is a local minimum of SB. In the
absence of any knowledge about the history of the system before and after the
sequence we use our experience to deduce that the low entropy state Ma was
the initial prepared state.

3.1. Origin of low entropy states

The origin of low entropy initial states poses no problem in "laboratory
situations" such as the one depicted in fig. 1. In such cases systems are
prepared in states of low Boltzmann entropy by "experimentalists", who are
themselves in low entropy states. Like other living beings they are born in such
states and maintained there by eating low entropy foods which in turn are
produced by plants using low entropy radiation coming from the sun, etc., cf.
ref. [4]. Their macrostates are of course much more complex than those of the
fluid in fig. 1 permitting them in particular to deliberately create, in localized
spatial regions, certain types of macrostates M with low values of 5B(M), like
the state Ma in fig. 1. There are of course some things they cannot do; in
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particular it appears that they cannot violate the general rule that the "total
SB", including the entropy of the experimentalists and their instruments, must
always increase, i.e. there are no Maxwell demons [20]. (Note however that
the reversal of velocities, in which SR is unchanged, is not ruled out by this
requirement.) But what about the origin of these creatures or about events in
which there is no human participation, e.g. if instead of fig. 1 we are given
snapshots of a meteor and the moon before and after their collision? Surely the
time direction is just as obvious as in fig. 1.

To answer this question along the Boltzmann chain of reasoning leads more
or less inevitably (depending on considerations outside our domain of dis-
course) to a consistent picture with an initial "state of the universe" having a
very small Boltzmann entropy, i.e. an initial macrostate M0 for which \FM \ is a
very small fraction of the "total available" phase space volume. Roger
Penrose, in his excellent chapter on the subject of time asymmetry [4], takes
that initial state, the macrostate of the universe just after the "big bang", to be
one in which the energy density is uniform. He then estimates that \FM \l
FM ~ 10~1( ) , where Mf is in the state of the "final" crunch, with \FM \ ~ total

available "phase-space" volume. This is a sufficiently small number (in fact
much smaller than necessary) to produce all we observe. The initial "mi-
crostate of the universe" can then be taken to be typical of FM .

In R. Penrose's analysis the low value of 5B(M0), for a universe with a
uniform density, compared to SB(M f) is due to the vast amount of the phase
space corresponding to macrostates with black holes, in which the gravitational
energy is very negative. I do not claim to understand the technical aspects of
this estimate, which involves the Bekenstein-Hawking formula for the entropy
of a black hole; it certainly goes beyond the realm of classical mechanics being
considered here. The general idea, however, that the gravitational energy,
which scales like TV2 for a star or galaxy, can overwhelm any non-gravitational
terms, which scale like /V, seems intuitively clear. It is this pure "high quality"
or low entropy form of the gravitational energy which appears to be the source
of all organizational order we observe in the universe [21]: including ultimately
our consciousness.

3.2. The cosmological initial state problem

I hope that I have convinced you that, as Schrodinger says, "Boltzmann's
theory . .. really grants an understanding ...". It certainly gives a plausible and
consistent picture of the evolution of the universe following some initial low
entropy state M0. The question of how M0 came about is of course beyond my
task (or ability) to answer. That would be, as Hawking puts it, "knowing the
mind of God". Still, as R. Penrose has pointed out, it would be nice to have a
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theory which would force, or at least make plausible, an initial M0 so special
that its phase space volume FM \ is infinitesimally small compared to the
proverbial needle in the haystack, see fig. 7.19 in ref. [4]. He and others have
searched, and continue to do so, for such a theory. While these theories
properly belong to the, for me, esoteric domain of quantum cosmology there
is, from a purely statistical mechanical or Boltzmannian point of view, a
naturalness to a spatially homogeneous initial state M0. Such an M0 would
indeed be an equilibrium state in the absence of gravity. It is therefore
tempting to speculate that "creation" or the big bang was "just" the turning on
of gravity, but I am told by the more knowledgeable that this is quite
unreasonable. The initial state problem is thus very much open. It is by far the
oldest open problem.

Within the context of special (or singular) origin theories of which the big
bang (followed by inflation) is a special example, there is nothing, not even
time, before the initial state. There is an alternate suggestion, dating back to
much before the advent of the big bang theory, in which one does not have to
assume a special singular creation. Boltzmann speculated that a low entropy
"initial state" may have arisen naturally as a fluctuation from an "equilibrium
universe". This is in some ways a very appealing minimal hypothesis requiring
no beginning or end or special creation. All you have to do is wait "long
enough" and you will get any state you want, assuming that a microcanonical
ensemble and some mild form of ergodicity exist for the universe as a whole.
This requires, at the minimum, some short range regularization of gravity. We
shall not worry however about such "technical details" since, as we shall argue
next, such a hypothesis is very implausible for other entirely conceptual
reasons.

While the obvious objection to this hypothesis, that such a fluctuation is
enormously unlikely, can be countered by the argument that if indeed the
history of the microstate of the universe is typical of trajectories in F then,
without waiting for some huge fluctuation, we humans would not be here to
discuss this problem, there remains a more serious objection. As pointed out
by Schrodinger and others and particularly by Feynman [2], the actual "size"
of the observed ordered universe is too large by orders and orders of
magnitude for what is needed. A fluctuation producing a "universe" the size of
our galaxy would seem to be sufficient for us to be around. In fact using purely
phase space volume arguments the "most likely" fluctuation scenario of how I
come to be here is to write this article is one where only "I" or even only my
consciousness really exists, i.e. one in which the smallest region possible is out
of equilibrium - and this happened just this instant. While irrefutable as an
academic debating position this is, of course, even more in conflict with our
observed macrostate (e.g. our memories). Merely accepting that what we
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observe and deduce logically from our marvelous scientific instruments about
the world is really there, the idea of a recent fluctuation seems "ridiculous"
and therefore makes the whole fluctuation from equilibrium scenarios seem
highly implausible. In fact Feynman, after discussing the problem in some
detail, concludes (in the tape of his lecture) that ". . . it is necessary to add to
the physical laws the hypothesis that in the past the universe was more
ordered, in the technical sense, than it is today-to make sense, and to make
an understanding of the irreversibility" [2].

The "technical sense" in the above statement clearly refers to the initial state
M0 having a smaller SB. Once we accept such an initial macrostate A/0, then
the initial microstate can be assumed to be typical of FM . We can then apply
our statistical reasoning to the further evolution of this initial state despite the
fact that it was a very unlikely one. As Schrodinger says in another place when
discussing this problem [22] "Never be afraid of dangers that have gone by! It
is those ahead that matter." One can of course construct alternative scenarios
in which the initial microstate would be atypical with respect to M0. It seems to
me however that there is a strong rationale for not accepting such an additional
improbable beginning without being forced to it by some observational consid-
erations.

4. Boltzmann vs. Gibbs entropies

The Boltzmannian approach described in the last section, which focuses on
understanding the observed time-asymmetric evolution of a particular macro-
scopic system, is conceptually different from the Gibbsian approach, which
focuses more on ensembles. Of course the two descriptions (of the same
reality) also have much in common and, when used properly, the mathematical
elegance of the Gibbsian approach beautifully complements the physical
directness of the Boltzmannian one and makes statistical mechanics both
mathematically deep and physically precise.

The difference between individual systems and ensemble behavior shows up
strikingly when we compare Boltzmann's entropy - denned for a microstate X
of a macroscopic system - with the more commonly used (and misused)
entropy SG of Gibbs, defined for an ensemble density p(X) by

=~ p ( X ) [ \ o g p ( X ) ] d X . (3)

Of course if we take p(X) to be the generalized microcanonical ensemble
associated with a macrostate M,
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O , otherwise,

then clearly

(5)

The two entropies thus agree with each other, and with the macroscopic
thermodynamic entropy, for systems in which the particle density, energy
density and momentum density vary slowly on a microscopic scale and the
system is in each small macroscopic region in equilibrium with the prescribed
local densities, i.e. in local equilibrium. This equivalence holds for terms of the
order of the size of the regions over which the densities are uniform (see
discussion after eq. (2)). The Gibbs ensemble formalism thus provides the right
tools also for systems in local thermodynamic equilibrium.

Note however that unless the system is in complete equilibrium and there is
no further systematic change in M or p then the time evolutions of SB and Sc

are very different. As is well known, SG({p}) never changes in time as long as
X evolves according to the Hamiltonian evolution, i.e. p evolves according to
the Liouville equation, while SB(M) certainly does. In particular, if we
consider the microcanonical ensemble corresponding to the macrostate Ma in
fig. 1, and then remove the constraint, then SG would equal SB at that initial
time. Subsequently SB would typically increase while SG would not change with
time [3]. Sc therefore does not give any indication that the system is evolving
towards equilibrium. This reflects the fact, discussed earlier, that the mi-
crostate of the system T,X does not remain typical of the local equilibrium
state M(t) for t >0. As long as the. system remains truly isolated the state T,X
will contain subtle correlations, which are reflected in the ensemble p(t) but
which do not affect the future time evolution of M. Thus the relevant entropy
for understanding the time evolution of macrosy stems is 5B and not Sc . The use
of SG in nonequilibrium situations is often a convenient technical tool but is not
related directly to the behavior of an individual macroscopic system. In fact
when a system with macrostate M is not in local equilibrium then we always
have SB»SC.

There are many people, however, who find 5G so nice where it works that
they want to keep it for general nonequilibrium situations, even if they have to
mutilate it. For this and other reasons many authors, beginning with Gibbs,
have introduced the notion of "coarse graining" [3,23]. This means that the
ensemble density p(f) is replaced by a coarse grained or smoothed out density
p ( t ) , constructed by dividing the phase space Finto cells and replacing p(t) by
a constant average density in each cell. When the cells are chosen, as they
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usually are, to correspond to macrostates M(t), then, to the extent that one can
neglect the dispersion about the average of M(t), the coarse graining can be
thought of as replacing the actual p(t) by a local equilibrium one, and thus
replacing the time independent SG by the increasing SB(M(t)) at all t> t0 [23].
If the dispersion is not negligible, we still have for the ensemble average of SB,
( S B ( M ( t ) ) } — S0({p(t)}). One can thus with some effort get out of the
self-inflicted bind caused by the use of 5G but it should be clear that attempts to
assign a deep physical significance to SG and other "entropies" like it can often
lead to unnecessary confusion.

5. Quantitative aspects of macroscopic behavior

My discussion so far has dealt with the general qualitative features of the
evolution of macroscopic systems: starting with a microstate Xa typical of a
nonequilibrium macrostate, FM , the successive microstates are characterized
by the increase of Boltzmann's entropy,

SB(M(X(t))) ^ S B ( M ( X ( t ' ) ) ) , i f t > t ' . (6)

We can, however, do much better, at least when we deal with the evolution of
relatively simple systems such as the one depicted in figs. 1 and 2. We can then
give, for suitably chosen macrodescriptions, highly accurate quantitative de-
scriptions, via purely macroscopic autonomous equations, of the time evolution
of M ( t ) . I am sure that most of you have recognized that fig. 2 represents the
solution of a diffusion equation for some macroscopic field m(r, r), of the form

,.,.. (7,

with some diffusion tensor D and suitable initial conditions at t= t.d.

5, 1 . Macroscopic laws : general considerations

Eq. (7) is an example of an autonomous hydrodynamical law governing the
time evolution of macroscopic densities. These laws generally take the form of
non-linear partial differential equations,

2-tMa(r,t) = Fa(M(r,t),gra<lM(r,t),...), a = 1 , 2 , . . . , (8)

where M(r, t) = {Ma(r, t)} denotes a "full" set of macroscopic densities de-
pending on space and time. While M and F are specific to the phenomena
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considered, their dependence on the exact nature of the microscopic con-
stituents of the macroscopic objects studied is in general small. The details of
microscopic structure generally enter in F only through the numerical value of
some parameters or their functional dependence on the densities, e.g. the
dependence of D on m in (7).

The origin of this universality lies in the fact that the hydrodynamical laws
are a consequence solely of the existence of different spatial and temporal
scales for microscopic and macroscopic phenomena, and some very general
features of the microscopic dynamics. The former is just what we already
discussed in the previous part. Most important among the latter are the locality
and additivity of the interactions and the resulting local conservation laws
(local on the macroscale). Consequently, our microscopic models can be rather
crude and still give rise to quantitatively correct macroscopic behaviour. All
that is necessary, is that the models contain the essential features responsible
for the phenomena of interest. Direct visual evidence for this has come
recently from computer simulations implementing microscopic dynamics for
"large" numbers of particles. These have shown dramatically how similar
indeed self-organized macroscopic evolutions are, resulting from very different
microscopic models - including Ising-like cellular automata; see the lecture by
Bernie Alder in this volume, and references there.

The utility of simple models, e.g. the Ising spin system, is well established
for equilibrium behavior and there has been much recent progress in the
mathematical derivation of hydrodynamic-type laws of the form of eq. (8) for
similarly simple dynamical models [7-9]. I believe that these models capture
the essential features of the transition from microscopic to macroscopic evolu-
tions in real physical systems. In all cases the resulting equations describe the
typical behavior of a single macroscopic system chosen from a suitable initial
ensemble, i.e. there is vanishing dispersion of the values of the macroscopic
variables in the limit of micro/macroscale ratio going to zero.

Unfortunately, due to our poor mathematical abilities, the derivation of
hydrodynamical laws is far from complete for systems with realistic Hamilto-
nian dynamics. To make rigorous the arguments leading from the microscopic
evolution to the macroscopic one requires, at present, some amount of
stochasticity in the microscopic evolution. The only exception I know of is the
Lorentz gas, which I shall discuss later. First, however, I want to make a slight
detour to tell you about the "best" current results for general Hamiltonian
systems. This is due to Olla, Varadhan and Yau [24] and while it is not directly
related to irreversibility, as they actually derive the dissipationless Euler
equations, it should give you a feel for where this program stands at present.

Olla, Varadhan Yau (OVY) manage to reduce the problem of proving
hydrodynamical laws for some systems, including Hamiltonian ones, to a
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reasonable, ergodicity type condition on the dynamics. To prove such er-
godicity for deterministic Hamiltonian systems is unfortunately still a formid-
able unsolved problem, so OVY have to add a diffusive noise mimicking
"randomizing collisions" between pairs of particles. This noise conserves
momentum and energy, but otherwise uniformly spreads the relative momenta.
It is sufficiently weak not to affect the hydrodynamical behavior on the time
scale on which the Euler equations of hydrodynamics are valid. These are

^ = -V- [nu(r, 0], (9a)

,,(„,,)], (9b)

u p ] , (9c)

where n, nu and ne are the conserved particle, momentum and energy
densities, and p(n, e) is the equilibrium pressure of the system at uniform
densities n and e and thus depends on the microscopic interactions. The
variables r and t in (9) are measured in macroscopic units which are related to
the corresponding microscopic scales, say x and 5, by x = e ~ V and s = e ~ ' f .
The hydrodynamical scaling limit corresponds to letting the ratio of micro-
scopic to macroscopic length scales e^O. Note that time and space are scaled
proportionally to each other. This is also the scaling under which eqs. (9)
remain invariant.

The thermodynamic entropy obtained by assuming that the fluid, confined to
a macroscopic region V, is in local thermodynamic equilibrium is given by

S,.cq = dr n(r, t) seq(e(r, t), n(r, t)) = 5B(M(0) , (10)

with seq(e, n) defined in (2). The equality on the right is to be understood as
holding up to order e, e ' being the length on the microscopic scale over which
the system is in a uniform equilibrium state. As is well known 5, cq does not
change in time under the Euler evolution (9), as long as the flow is smooth, i.e.
no shocks. The constancy in time of the Boltzmann entropy for a smooth
solution of the Euler equations (9) is to be understood also as corresponding to
SB/K ^ being of order e~ \ in the limit e—»0. The existence of smooth
solutions of (9) for times t' ^ t is in fact one of the requirements of OVY for
the validity of (9) at time t. The derivation, but presumably not the result,
breaks down at a time t , when the solution of (9) develops a shock. (There are
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also some "technical" requirements on the Hamiltonian which are irrelevant
here.)

It is interesting to note that the derivation of OVY uses the fact that for
microscopic times s = e~lt, t<ts, there are no dissipative effects, i.e. SB is
unchanged to leading order, e~" . Thus starting from a local equilibrium
ensemble pM(0), A/(0) corresponding to the densities, n(r,0), u(r, 0) and
e(r, 0), the Gibbs and Boltzmann entropies (per particle) agree at ? = 0 and
since neither changes for t<ts they have to continue to agree. On the other
hand SB(M(tJ) agrees with 50({pA/(()}) for some M(t). Thus if p(t) is the actual
ensemble density, starting with p(0) = pw(()), then Sc({p(t)}) = Sc({pM(l)}),
which in fact implies (using a lot of deep mathematics) that M(t) evolves, for
t< rs, according to (9).

It should be emphasized again that the artificial stochasticity added to the
Hamiltonian dynamics by OVY disappears in the hydrodynamical scaling limit
e—»0. The results of OVY were extended by Fritz [25] to prove Euler type
equations for hydrodynamical lattice gases of the type discussed by Alder. The
randomness needed here is more "short range" and thus in some sense "more
physical" than that needed by OVY; Fritz, Funaki and Lebowitz [26] have
investigated similar mechanisms, for Hamiltonian systems. Ultimately one
hopes of course to do away with any need for artificial randomness and derive
(9) directly from Hamiltonian dynamics in the limit e—»0.

This is the current situation for general fluids - we understand the origin of
the non-dissipative equations (9); they arise from the macro space-time scaling
r = ex, f = es when e —> 0, but some mathematical details are still missing. To
see dissipation, as expressed by the Navier-Stokes equations for a fluid, in
which the rhs of (9b) and (9c) are modified by the addition of viscous and heat
conduction terms, we need to take account of the fact that in reality e is not
zero; it is roughly of the same order as the ratio of interatomic spacings to the
distance over which the macroscopic densities change significantly, say ang-
stroms to millimeters. The irreversible changes in which SB increases signifi-
cantly then require microscopic times of order e ", the time scale appropriate
for diffusion, for gradients of order e. However, unlike the pure diffusion
equation (6), which remains invariant under the transformation r—»Ar ' ,
?—»A 2 / ' , the Navier-Stokes equations have no such scaling behavior. It is
therefore unclear at present whether they are exact in some limit or are just the
leading correction to the Euler equations. The situation is somewhat different
for the incompressible Navier-Stokes equations for the velocity field u(r, t)
with « and e taken as constant. These have the form

— = -V-[uu + n] + vV2u, V - w = 0, (11)
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where v is the kinetic viscosity and IJ is the stress tensor computed from the
velocity field. Eq. (11) is invariant when r^> \r', t—>\ t' and u—> A «'. This
means that it can in principle be obtained from the microscopic dynamics when
the macroscopic velocity is small, i.e. of order e compared to thermal vel-
ocities. At the present time such a derivation can in fact be made starting from
the Boltzmann equation [27] whose status I shall discuss briefly later. First,
however, I want to describe an example in which we can derive an irreversible
macroscopic diffusion equation from a reversible microscopic Hamiltonian
dynamics without any additional assumptions.

5.2. The Lorentz gas

We consider the Lorentz model of a classical gas of non-interacting particles
moving in a fixed periodic array of hard convex scatterers, e.g. hard spheres in
three dimensions or hard discs in two. This model, also known as the Sinai
billiard, possesses very strong hyperbolic properties; we assume that the
particle can travel only a uniformly bounded distance between collisions. This
allows the diffusive Brownian motion of a single particle to be rigorously
established in the long-length- and time-scale limit. More precisely, what
Bunimovich and Sinai [10] proved for two dimensions and Chernov [28]
extended to higher dimensions, is the following: Let x(t\ 00, *„) be the position
at time t of a particle with initial position x(] and initial unit velocity in the
direction 0(l. (Since the magnitude of the velocity is not changed by the
dynamics we consider a particle with unit speed.) If there is an uncertainty in
the initial position x(t given by the probability density p(x) dx then this will
induce a probability distribution on the trajectories x(t; •). Define now the
"macroscopic" position je at the macroscopic time t, as

y f ( t - - ) = e x ( t / f
2 - - ) . (12)

Then, as e — » 0 , a "typical" trajectory looks, on the macroscopic scale, just like
Brownian motion, i.e.

* . (< ; • )—»W D (O. (13)
weak ly

Here WD(t) is ^-dimensional Brownian motion starting at the origin with a
positive diffusion tensor D, given by the Green-Kubo formula. Weak conver-
gence means roughly that on the macroscopic scale the behavior of the
trajectory, e.g. the correlations between its position in different regions of
space at different times, is indistinguishable from that of a Brownian path.

Let us consider now the case where we have a Lorentz gas in a macroscopic
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box, say a cube with sides of length 2bL where b is a fixed number, say ten,
and L is the macrolength unit, L = ale, a some unit of microscopic distance,
e.g. the diameter of a scatterer, which is kept fixed, and e < 1. Let X represent
a microscopic phase point in the phase space region F in which all particles
have unit speed and let the macrostate M corresponding to X be specified by a
smooth initial density nn(r) on the macroscale r, -b =£ ra =s 6, a = 1, 2, 3. This
could be our system in fig. 1, in which the scatterers are invisible, and in which
«(,(/•) = C[ for —b =£ r3 < 0, n(](r) = c2 for 0 < r3 < 6, c, > c2. Since this many-
body system is very far from being ergodic, the kinetic energy of every particle
being separately conserved, we consider the Gibbs ensemble with uniform
density on the phase space region FM C. F in which each particle has unit speed
and the macrodensity is given by nn(r). Let now edN((a/€d, tie'1) be the number
of particles in a macroscopic region « of volume |w , having volume w\/ed in
microunits, at the microscopic time tie2. Then it follows from the work of
Lebowitz and Spohn [11] that as e^O, the random variable e d j f ( w l e d , tie2)
approaches a deterministic value

'1, tie2)——» \ n(r, t) dr , (14)
e — 0 J

W

where n(r, t) satisfies (6) with n(r, 0) = n(](r) and the D obtained by
Bunimovich and Sinai via the Kubo formula. The approach in (14) is with
probability one, i.e., it holds for every typical point X of the initial ensemble.

5.3. Dilute gases and Boltzmann's h-function

The Boltzmann equation is a deterministic, time-asymmetric, integro-
differential equation for the time evolution of the density of particles /, (r, v) in
the six-dimensional position and velocity space of the system, the so-called
/n-space (/u, for molecule, /"for gas). It was "derived" by Boltzmann, using
intuitively appealing heuristic reasoning, for a dilute gas in which the potential
energy is negligible. While /, is usually referred to as a "mesoscopic" descrip-
tion, intermediate between the microdescriptions and macrodescriptions de-
scribed so far, we can in fact sometimes usefully think of/, as describing the
macroscopic state M of such a system, cf. ref. [7]. The Boltzmann equation is
then another type of macroscopic equation to be derived from the microscopic
dynamics in some suitable scaling limit. This requires in addition to the
hydrodynamical scaling of the Euler type discussed earlier, also a reduction in
the particle density as a function of e so that on the "macroscopic scale" the
density is of order e. This keeps the mean free path between collisions finite
while the pressure and energy become those of a non-interacting system (ideal
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gas). In this limit, which is equivalent to what is usually referred to as the
Boltzmann-Grad limit [7], Lanford was able to derive rigorously the irrevers-
ible Boltzmann equation from the reversible Hamiltonian dynamics of a system
of hard spheres (or more general finite range interactions) [29]. The results
(which, at present, are unfortunately restricted to "short" times) are for typical
microscopic phase points with respect to a suitable initial measure [7,29].

Forgetting about limits and just talking physically, we note that for the
choice of the macrostate M corresponding to /, (r, v) the Boltzmann entropy
5B(/,) coincides (up to constants) with the negative of Boltzmann's famous
h-f unction,

f}(r,v)\ogfl(r,v)drdv. (15)

Now according to the Boltzmann equation, SB will keep on increasing until
the system reaches equilibrium when SB(/,) is equal to Nseq(e, n) given in (2).
This is correct as long as the potential energy is really negligible. When this is
not the case however then it is possible to create experimentally a situation, see
ref. [30], in which /iB(/,)^fccreases with time. To see this let the macroscopic
system of N particles in volume V with total energy E start out, at t = 0, with a
Maxwellian distribution of velocities, /,(/% v, 0) =/M(«, T0; v) with uniform
particle density n = NIV and kinetic temperature T0, where

fM(n, T; v) = n(2-nkBT/m)~3'2 exp(-mv2/2kBT) . (16)

Now if the initial T0 is greater than the equilibrium temperature of this system,
7"cq(E), determined by the total energy E (and volume V), then the system will
evolve toward a state in which /,(/?, v, t)^fM(n, Teq; v) with 7"eq < Tn and
—/iB ( / , ) will decrease since

M/i(«))-M/i(0))=|Anog[ro/req(E)]>0. (17)

The choice of an initial Maxwellian is of course inessential. All that is required
is that /iB(/,(r, v, 0)) be smaller than h B ( f M ( n , Tcq; v)), see ref. [30].

On the other hand, for any reasonable initial/, the correct 5B(/,), defined
by eq. (1), will of course (almost) never decrease. There is no contradiction
here since when the potential energy is not negligible, SB(/,)^ ~^ B ( / i ) - Of
course, the Boltzmann equation is not valid in the case when the potential
energy is not negligible since it assumes from the beginning conservation of
kinetic energy and an ideal gas equation of state.

The existence and efficiency of the interaction terms is what leads to the
Euler equations, rather than the Boltzmann equation, when the density is not
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taken to zero as e^O. Note also that there is no contradiction in SB staying
constant for the Euler evolution but increasing for the Boltzmann equation. In
the low density limit required for the validity of the Boltzmann equation
e2SB-H>0 and the entropy given by (15) is of lower order in e.

6. Quantum mechanics

The analysis given above in terms of classical mechanics can be rephrased,
formally at least, in terms of quantum mechanics. We make the following
correspondences:

(i) microstate ^<=>wave function i /»(r , , . . . ,rA.);
(ii) time evolution T,XOunitary Schodinger evolution £/,(/*;

(iii) velocity reversal RX^>complex conjugation t/j;
(iv) phase space volume of macrostate \FM Odimension of projector on

macrostate M.
This correspondence clearly preserves the time symmetry of classical mech-

anics. It does not however take into account the non-unitary or "wave function
collapse" (measurement) part of quantum mechanics, which on the face of it
appears time asymmetric. In fact it is sometimes said that quantum theory "is
concerned exclusively with the prediction of probabilities of specific outcomes
of future measurements on the basis of the results of earlier observations.
Indeed the reduction of the wave packet has as its operational contents nothing
but this probabilistic connection between successive observations." The above
quote is taken from an old article by Aharonov, Bergmann and Lebowitz
(ABL) [12], which to me still seems reasonable now. In fact I will now quote
the whole abstract of that article:

"We examine the assertion that the "reduction of the wave packet", implicit
in the quantum theory of measurement, introduces into the foundations of
quantum physics a time-asymmetric element, which in turn leads to irrever-
sibility. We argue that this time asymmetry is actually related to the manner in
which statistical ensembles are constructed. If we construct an ensemble time
symmetrically by using both initial and final states of the system to delimit the
sample, then the resulting probability distribution turns out to be time symmet-
ric as well. The conventional expressions for prediction as well as those for
"retrodiction" may be recovered from the time-symmetric expressions formally
by separating the final (or the initial) selection procedure from the measure-
ments under consideration by sequences of "coherence destroying" manipula-
tions. We can proceed from this situation, which resembles prediction, to true
prediction (which does not involve any postselection) by adding to the time-
symmetric theory a postulate which asserts that ensembles with unambiguous
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probability distributions may be constructed on the basis of preselection only.
If, as we believe, the validity of this postulate and the falsity of its time reverse
result from the macroscopic irreversibility of our universe as a whole, then the
basic laws of quantum physics, including those referring to measurements, are
as completely time symmetric as the laws of classical physics. As a by-product
of our analysis, we also find that during the time interval between two
noncommuting observations, we may assign to a system the quantum state
corresponding to the observation that follows with as much justification as we
assign, ordinarily, the state corresponding to the preceding measurement."

Aharonov*1 has emphasized and developed further the idea described in the
last sentence of the abstract. He assigns two wave functions to a system - one
coming from the past and one from the future measurement. It is not clear to
me whether this will lead to new insights into the nature of time. Aharonov
does think so and there are others too who feel that there are new fundamental
discoveries to be made about the nature of time [31]. While this is certainly
something interesting to think about, it definitely goes beyond my premises so I
will not pursue this further here.

Quite aside from that I believe that the ABL analysis shows that one can
conceptually and usefully separate the measurement formalism of conventional
quantum theory into two parts, a time symmetric part and a second-law type
asymmetric part - which can be traced back, using Boltzmann type reasoning,
to the initial low entropy state of the universe. (Of course it is not clear how to
discuss meaningfully the concept of measurement in the context of the evolu-
tion of the universe as a whole, but see the recent works by Gell-Mann and
Hartle [32] and Hartle [33].)

7. Concluding remarks

The reader who has gotten to this point will have noticed that my discussion
has focused almost exclusively on what is usually referred to as the thermo-
dynamic arrow of time and on its connection with the cosmological arrow. I did
not discuss the asymmetry between advanced and retarded electromagnetic
potentials or "causality" [31]. It is my general feeling that these and other
arrows, like the one in the wave packet reduction discussed in the last section,
are all manifestations of Boltzmann's general principle, and of the low entropy
initial state of the universe. For this reason I also agree with most physicists
that there would be no change in the monotone increase of entropy if and
when the universe stops expanding and starts contracting.

In lectures and private conversations.
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7.1. Typical vs. averaged behavior

I would like to emphasize again in as strong terms as I can that having results
for typical microstates rather than averages is not just a mathematical nicety
but goes to the heart of the problem of understanding the microscopic origin of
observed macroscopic behavior - we do not have or need ensembles when we
carry out observations like those illustrated in f i g . 1. What we need and can
expect to have is typical behavior. Ensembles are therefore useful mathemati-
cal tools as long as the dispersion, in the quantities we are interested in, is
sufficiently small. This is always the case for properly denned macroscopic
variables in equilibrium Gibbs ensembles: they have the property of "self-
averaging". We can therefore use these ensembles to calculate, with great
confidence and precision, the equilibrium properties of macroscopic systems.
Also, in the overwhelming majority of cases, i.e. with probability approaching
one as N grows large, the evolution of M(?), following the lifting of a constraint
from a macroscopic system in equilibrium at some time f ( ) , will be the same for
different X(tH). It makes therefore sense to use such an ensemble as the initial
"statistical state" of the system at t(].

There is no such typicality with respect to ensembles describing the time
evolution of a system with a few degrees of freedom. This is an important
distinction (unfortunately frequently overlooked or misunderstood) between
irreversible and chaotic behavior of Hamiltonian systems. The latter, which can
be observed in systems consisting of only a few particles, will not have a
uni-directional time behavior in any particular realization. Thus if we had only
a few hard spheres in the box of fig. 1, we would get plenty of chaotic dynamics
and very good ergodic behavior (mixing, K-system, Bernoulli) but we could
not tell the time order of any sequence of snapshots.

7.2. Other uses of entropy

Let me close by noting the existence of many well known and some obscure
connections between "entropy" and degree of order or organization in various
physical and abstract systems far removed from the simple gas in fig. 1. It is my
feeling that, at least when dealing with physical objects containing many
microscopic constituents, e.g. macroscopic or mesoscopic systems, the distinc-
tion between Boltzmannian and Gibbsian entropies, made earlier for simple
systems, is always important and needs to be explored. I am therefore
suggesting that there is interesting work to be done on obtaining more refined
definitions of such concepts for complex systems like a Rembrandt painting, a
beer can, or a human being. It is clear that the difference in SR between a
Rembrandt and a similar size canvas covered with the same amount and type
of paint by some child is orders of magnitude smaller than the entropy
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differences we have been talking about earlier. The same is true, I am afraid,
for the entropy difference, if at all definable, between a living and a dead
person. We therefore need more refined, logically consistent and physically
meaningful definitions of organization for a given complex system than those
currently available in information or complexity theory.
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