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We propose and analyze the properties of a simple, computationally efficient pair potential for nonpolar
molecules based on the contact function for ellipsoidal cores. We discuss the relation of this potential to the
Gaussian overlap potential and show that the present potential gives the correct extension of the ideas of the
Gaussian overlap potential to mixtures. We show that this potential obeys a form of the principle of corre-
sponding states and derive an expression for the second virial coefficient. As this potential has an incorrect
symmetry at large separations, we derive another contact potential that behaves isotropically at infinite sepa-
ration. Unfortunately, this potential does not have the good computational features of the one investigated here.
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I. INTRODUCTION

There is now a considerable amount of literature in which
models of soft potentials@1# between nonspherical molecules
are used for simulating the behavior of simple molecules and
liquid crystals @2–4#. A number of these models@5,6# are
extensions of the original Gaussian overlap potential~GOP!
originally proposed in Ref.@7#. Our interest in this potential
became aroused by a work by Singhet al. @8# reporting the
implementation of a perturbation theory for a model fluid
described by it, ascribing to the GOP a geometric signifi-
cance that it does not have. We therefore thought it important
to report the theory of a more general potential, the ellipsoid
contact potential~ECP!, based on the contact function@9,10#
for hard ellipsoids, to which the GOP is an approximation. In
the body of the article, we will demonstrate that although the
GOP is a reasonable approximation for not too eccentric
identical particles, it has serious problems when extended in
an obvious way to mixtures.

It should be remarked that a preliminary version of this
work has circulated around for some time. Some of the re-
sults have been stated and used in a recent article@11#, but
there is no full report in the literature of the complete formu-
lation of the ECP, nor does Ref.@11# stress the problems
associated with naively applying Gay-Berne potentials to
nonidentical particles.

The genesis of the GOP is to consider the joint probability
distribution for two three-dimensional asymmetric Gaussian
distributions centered around two points, which are the mo-
lecular centroids. This is itself a Gaussian distribution of the
components of the vector connecting the molecular centers.
If R denotes this vector, then the distribution function is
proportional to

exp~2RTG821R!, ~1.1!

where G8 is a matrix whose elements have the units of
length squared and depend on the lengths and orientations of
the three principal semiaxes for the shape ellipsoid of each
molecule.

The ~simplest version of! GOP is then obtained by replac-
ing the square of the scaled length of a spherically symmetric
potential by the negative of the argument of the exponential
in the joint probability distribution. For example, if we write
the Lennard-Jones potential as

4e@~r 2/s2!262~r 2/s2!23#, ~1.2!

then the constant energy GOP is

4e@~RTG821R!262~RTG821R!23#. ~1.3!

In the original version, the parametere is also orientation
dependent, but this is rather weak. We will retain the orien-
tation independence ofe partly because it entails certain
computational advantages, partly because potentials of the
form ~1.3! satisfy a form of the principle of corresponding
states, and partly because the physical interpretation of the
angle dependence of thee is more obscure than that of the
separation parameter.

Even though the idea behind the GOP is physically attrac-
tive, the argumentRTG821R of the probability function does
not have a cleargeometricinterpretation. This lack of inter-
pretation has led Singhet al. @8# into the trap of giving it one
anyway. If we writeR5RR̂, whereR̂ is a unit vector, then

RTG821R5R2R̂TG821R̂. ~1.4!

In constructing a perturbation theory with a nonspherical ref-
erence system, these authors mistakenly interpret the dis-
tance

s5~R̂TG821R̂!21/2 ~1.5!

PHYSICAL REVIEW E DECEMBER 1996VOLUME 54, NUMBER 6

541063-651X/96/54~6!/6565~8!/$10.00 6565 © 1996 The American Physical Society



as the distance of closest approach of two ellipsoids with
fixed orientations. In the main body of this article, we show
that RTG821R is an approximationto the contact function
for ellipsoids, which has been discussed elsewhere. Whereas
it is a good approximation in the case of two not too asym-
metric ellipsoids with equal dimensions, we show that it is
not in other cases. More explicitly, we show that the contact
functionF(A,B) for two ellipsoids labeledA andB, which
is given by

F~A,B!5$maxS~l!ulP@0,1#%, ~1.6!

whereS(l) is a non-negative function of the ellipsoid coor-
dinates derived by Perram and Wertheim@9#, is related to the
Berne-Pechukas function by the relation

RTG821R5S~1/2!. ~1.7!

The object function in the maximization~1.6! has the form

S~l!54l~12l!RTG~l!21R, ~1.8!

so that the distance scaling of the contact function is the
same as that of the GOP function, as shown in Eq.~1.4!.
Note thatG(1/2)5G8.

Thus the functionRTG821R is always anunderestimate
of the contact function and hence the estimate~1.5! of the
intercenter distance at the tangency of the ellipsoidal cores is
an overestimate, as has been noted in@12#. The accuracy of
this estimate declines dramatically in the case when the two
ellipsoids have different sizes or shapes.

The geometry of the contact function can be understood
by performing the following thought experiment. Focus on
one of the ellipsoidal bodies and consider one of the family
of similar ellipsoids obtained from it. For this member of the
family, there will be a single member of the family of similar
ellipsoids obtained from the other ellipsoidal body that is
tangent to it. The locus of points obtained by repeating this
operation for every member of the first family is a curve
connecting the centers of the two ellipsoidal bodies. The ob-
ject function~1.8! is a weighted sum of the quadratic forms
describing the two ellipsoids evaluated on this curve. In@9# it
is shown that this object function has a maximum value at
some point on the curve. This maximum value is the contact
function, which, although it is a measure of the proximity of
the two ellipsoidal bodies, cannot be related in any simple
way to a collision diameter unless the axes of the two ellip-
soids are parallel.

This leads us to propose a variant of the GOP, which we
call the ellipsoid contact potential, in which we replace the
square of the scaled distance in the Lennard-Jones potential
by thecontact function of ellipsoidal cores

4e@„F~A,B!…262„F~A,B!…23#. ~1.9!

Potentials of the form~1.3! or ~1.9! have a couple of inter-
esting properties. The first is that the second virial coefficient
obeys a type of principle of corresponding states. For Eq.
~1.9!, the value of the second virial coefficient is

B2
ECP5B2

HEB2
LJ~kBT/e!, ~1.10!

i.e., the product of the~temperature-independent! second
virial coefficientB2

HE for hard ellipsoids with the same semi-
axes as that of the ellipsoidal core and the reduced second
virial coefficientB2

LJ(kBT/e) for the Lennard-Jones potential.
Many real molecular gases satisfy a relation of the form
~1.10! and hence the principle of corresponding states. A
word of caution is in order: the second virial coefficient for a
model fluid consisting of two-center Lennard-Jones mol-
ecules very closely satisfies a formula of the form~1.10!.

The scaling of the contact function, which we may write
in the form

F~A,B!5R2f ~A,B!, ~1.11!

where f (A,B) depends only on orientations, means that ori-
entational averages of the ECP can be written in the form

4e@R212^„f ~A,B!…26&2R26^„f ~A,B!…23&#, ~1.12!

where^F(A,B)& denotes an average over the orientations of
A andB. The orientation averages in Eq.~1.12! areindepen-
dent of separation R. These orientation averages are a major
computational overhead in the implementation of the pertur-
bation theory with a nonspherical reference system. For this
potential, the three-dimensional integrals they imply need
only be performed once instead of at each separation, as is
the case with potentials such as the two-center Lennard-
Jones~2CLJ! model for homonuclear diatomic molecules.

This useful property has its downside. We would expect
that the interaction of two nonpolar molecules would become
isotropic at large separation, meaning that the ratio of the
~numerically! largest and smallest energy should tend to 1.
This is the case with the 2CLJ model, but not, for example,
with either the GOP or the ECP. As the contribution to ther-
modynamic functions from values of short-ranged potential
functions at large distances is negligible, this is something
we can live with, especially if the potential better models the
forces between molecules in close proximity to each other.
However, for the sake of completeness, we present the deri-
vation of another contact function for hard ellipsoids that
leads to a potential isotropic at large separations.

The only real test of empirical effective two-body poten-
tials is whether they work. In this context, ‘‘work’’ means
that we are able to find constant~or almost constant! values
of the potential parameters that are able to reproduce the
properties of real substances over large ranges of temperature
and pressure. An even more stringent test is whether the
potential parameters can then reproduce the properties of
mixtures.

This potential should be well suited to a variant@13# of
the Kohler-Quirke-Perram perturbation theory@14# for non-
polar molecular fluids. We are currently using this theory to
extract ECP potential parameters from equation of state data
for simple molecular fluids such as nitrogen. The results of
these investigations will be reported elsewhere.

II. THE CONTACT FUNCTION
FOR ELLIPSOIDS REVISITED

Although the contact function for ellipsoids has been de-
rived elsewhere@9#, we sketch here some of its principal
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properties, as well as generalize and simplify some of its
consequences.

A. Definition of the contact function

Consider two ellipsoids labeledA andB with semiaxes
a1 ,a2 ,a3 andb1 ,b2 ,b3, respectively. Let us suppose for the
time being that all six of these semiaxes are positive. The
rotational state of the ellipsoids is conveniently expressed by
giving the setsu1 ,u2 ,u3 and v1 ,v2 ,v3 of orthonormal unit
vectors along the principal axes of the two ellipsoids. If the
centers are atra ,rb , respectively, we define the intercenter
vector

R5rb2ra . ~2.1!

Let us define the matrices

A5(
k
ak

22ukuk
T , ~2.2a!

B5(
k
bk

22vkvk
T . ~2.2b!

In the case where none of the semiaxes vanish, these matri-
ces have the inverses

A215(
k
ak
2ukuk

T , ~2.3a!

B215(
k
bk
2vkvk

T . ~2.3b!

Perram and Wertheim@9# then derived the object function

S~l!5l~12l!RT@~12l!A211lB21#21R ~2.4!

5l~12l!R̂T@~12l!A211lB21#21R̂R2,
~2.48!

wherel is a parameter. It may be easily seen thatS(l) is
non-negative forlP@0,1#. Then a contact functionF(A,B)
for the two ellipsoids is

F~A,B!5$maxS~l!ulP@0,1#%. ~2.5!

If F(A,B),1 the two ellipsoids overlap, ifF(A,B).1 they
do not, and ifF(A,B)51 they are externally tangent. In Ref.
@9#, it was proved that the functionS(l) is concave down for
lP@0,1#. Taken with the property thatS(l) is non-negative
in @0,1# and zero at both end points, this has the important
consequence that the object functionS(l) has a single maxi-
mum in the interval@0,1#.

The concavity property ofS(l) guarantees that Brent’s
method@15# will converge superlinearly to the unique maxi-
mum. However, optimization schemes can sometimes be
speeded up if the derivative of the object function can be
computed quickly, although this was not our experience. The
value of f 8(l) may be computed as follows. Let us define
the matrix

G5~12l!A211lB21, ~2.6!

so that

S~l!5l~12l!RTG21R5l~12l!~G21R!TR. ~2.7!

After a certain amount of algebra, the result of differentiating
equation~2.7! is

f 8~l!5~G21R!T$~12l!2A212l2B21%G21R. ~2.8!

The only computational task of any complexity is to compute
G21R, which is most simply calculated asX, the solution of
the 333 system of linear equations

GX5R, ~2.9!

so that

S~l!5l~12l!RTX.

Although the form of the object function is complicated, its
calculation proceeds quite rapidly. An alternative algorithm
for rapid computation of the contact function is given in@12#.

If we denote bylm the value ofl for which the maxi-
mum of Eq.~2.5! occurs and use the form~2.4a!, then the
contact function is

F~A,B!5lm~12lm!R̂T@~12lm!A211lmB
21#21R̂R2.

~2.10!

Note that the value oflm is independent of the separation
R. This has the computationally useful property that the ori-
entational average of any power ofF(A,B) is a function of
R times the orientational average of a single function of ori-
entations, which therefore need only be performed once.
Other potentials, such as the 2CLJ, do not have this property
@14#, so that the implementation of perturbation theories for
them are much more time consuming. Setting the contact
function in Eq.~2.10! to unity and solving for the valueR*
of R at which this occurs, we have for the separation of the
cores at contact

R*5$lm~12lm!R̂T@~12lm!A211lmB
21#21R̂‰21/2.

~2.11!

To establish the relationship between the contact function
and the function~1.4! appearing the GOP, we need to gen-
eralize the original derivation of Berne and Pechukas. We
wish to derive a general algorithm for the computation of the
Gaussian overlap potential in the case when~i! the ellipsoids
are not necessarily identical and~ii ! the ellipsoids do not
necessarily have a symmetry axis. We have also taken the
liberty of employing the notation we use for the discussion
of the ellipsoid contact function. Consider the quadratic form

P~s!5 1
2 @sTAs1~s2R!TB~s2R!# ~2.12!

of the vectors. The derivation of the GOP involves comput-
ing the integral

I ~R,u,v!5CE E E dsexp$2 1
2 @sTAs1~s2R!TB~s2R!#%,

~2.13!

whereu,v stand for the two triplets of unit vectors defining
the principal axes andC is the normalization constant of the
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probability distribution represented by the integrand in Eq.
~2.13!. To evaluate this integral we write

sTAs1~s2R!TB~s2R!5~s2R* !TE~s2R* !1g
~2.14!

and attempt to find values of the matrixE, the vectorR* ,
and the scalarg. Clearly

E5A1B. ~2.15!

Expanding and equating coefficients, we find that

sTER*5sTBR,

giving

R*5E21BR. ~2.16!

Finally,

g5RT$A211B21%21R. ~2.17!

The value of the integral~2.13! is then

I ~R,u,v!5Ce2~1/2!RT$A211B21%21R

3E E E ds e2~1/2!~s2R* !TE~s2R* !.

Shifting the origin of coordinates, this is

I ~R,u,v!5Ce2~1/2!RT$A211B21%21RE E E ds e2~1/2!sTEs.

~2.18!

Let w1 ,w2 ,w3 be the eigenvectors of the~positive definite!
matrix E with corresponding ~positive! eigenvalues
l1 ,l2 ,l3. If we denote bye1 ,e2 ,e3 the corresponding unit
vectors in the laboratory frame, then the unitary matrix

D5( wiei
T

diagonalizesE. Performing standard manipulations, the
value of the integral can be evaluated to give the result

I ~R,u,v!5Ce2~1/2!RT$A211B21%21R@8p3/det~E!#1/2.
~2.19!

The negative

1
2R

T$A211B21%21R ~2.20!

of the argument of the exponential function in Eq.~2.19! is
precisely equal to the right-hand side of Eq.~2.4! evaluated
with l51/2. By the maximal property of the contact func-
tion, the quantity~2.20! is always bounded above by the
contact function. Alternatively, we can write Eq.~2.20! in
the form

1
2R

T$A211B21%21R5 1
2 R̂

T$A211B21%21R̂R2

~2.21!

and interpret the quantity

s~R̂,u,v!225 1
2 R̂

T$A211B21%21R̂ ~2.22!

as the inverse square of an orientation-dependent collision
parameter or proximity measure. In fact,s is only the dis-
tance of closest approach when the axes of the two ellipsoids
are parallel

ai5bi

and the shape ellipsoids are not too eccentric. Then the value
of l at which the maximum of occurs will lie close to 1/2 for
many configurations, so that the quantitys(R̂,u,v)22 will
not be too different from the contact function. This is, of
course, generally not the case, so that no geometrical inter-
pretation should be put ons(R̂,u,v)22. In Sec. II B, we give
an example illustrating this point.

B. Degenerate cases

We achieve a couple of interesting results for special val-
ues of the axis ratios.

1. Spheres

If all the semiaxes ofA are equal toa and all those of
B are equal tob, then the matricesA,B have the form

A5a22(
k
ukuk

T5a22I ,

B5b22(
k
vkvk

T5b22I ,

so that the matrixG is given by

G5@~12l!a21lb2#I .

The object functionS(l) is then given simply by

S~l!5l~12l!@~12l!a21lb2#21RTR. ~2.23!

The maximum value of this function occurs when

l5a/~a1b!

and is is easily calculated to be

RTR@a1b#22,

which is the square of the intercenter distance divided by the
square of the sum of the radii. This is, of course, a natural
contact function for spheres. This should be compared with
the value of the GOP collision parameter

~1/2!~a21b2!21. ~2.24!

This value is, of course, unphysical. Thus the GOP, as it
stands, has no natural generalization to mixtures.

2. Ellipses

The results of this section cease to be valid when one or
more of the ellipsoid semiaxes becomes zero. In this event
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the matrixG will become singular atl50 and/orl51. This
case has been analyzed in detail elsewhere@16# and we give
the principal results here.

Suppose that one of the semiaxes,ai say, of the ellipsoid
A is zero. Then the matrixG is singular whenl50. In this
event the value off (0) may be shown to be@16#

f ~0!5~ui
TR!2/ui

TB21ui , ~2.25!

whereas ifA is nondegenerate but one of the semiaxes of
B,bi say, is zero, thenG is singular whenl51 and the value
of f (1) is

f ~1!5~vi
TR!2/vi

TA21vi . ~2.26!

The cases when two semiaxes ofA or B ~but not both! are
zero and the ellipsoid degenerates to a line segment are also
discussed in Ref.@16#. If ai5aj50, then

f ~0!5a iR
Tuj1a jR

Tui , ~2.27!

wherea i ,a j are given as the solution of the linear equations

@ui
TB21ui #a i1@ui

TB21uj #a j5ui
TR,

@uj
TB21ui #a i1@uj

TB21uj #a j5uj
TR.

The corresponding result when the ellipsoidB is doubly de-
generate andG is singular whenl51 may be obtained by
symmetry considerations. The case when each ellipsoid has a
degenerate axis will not generally occur in practice and we
do not discuss it here.

C. Computation of the contact function

The most convenient numerical method for finding the
contact function is the obvious one. We begin by computing
the elements of the matrices

A215(
k
ak
2ukuk

T,

B215(
k
bk
2vkvk

T,

noting that they are symmetric, so that only six elements of
each are required. For each value ofl in the open interval
@0,1#, compute the six necessary elements of the symmetric
matrixG and compute the solutionX of the linear equations
~2.9!. It does not seem to make very much difference to the
time required whether we use the explicit solution or use a
Gauss-Jordan elimination routine. A systematic method for
locating the maximum is then given by Brent’s method@15#.

Alternatively, we may iterate towards the maximum by
applying a root finding technique to the equation~2.8! for
f 8(l), written as

f 8~l!5XT$~12l!2A212l2B21%X. ~2.28!

We conclude this section by noting that when one of the
ellipsoids is degenerate, the object function can be mono-
tonic and its maximum may occur at an end point. We also
note that the method of obtaining the ellipsoid contact func-

tion relies on the fact that the Cartesian equation of the sur-
face of an ellipsoid is a quadratic form, so there are no other
closed surfaces apart from ellipsoids for which this type of
contact function can be derived.

A contact function that is isotropic at large separations

Another contact function may be obtained by considering
the pointr on the surface of ellipsoidB for which the value
of the quadratic form

SA5~r2rA!TA~r2rA! ~2.29!

is a minimum. That is, we seek to minimize the right-hand
side of Eq.~2.29! subject to the constraint

SB5~r2rB!TB~r2rB!51. ~2.30!

This problem may be solved using the method of Lagrange
multipliers by taking the gradient with respect tor of the
function

S*5~r2rA!TA~r2rA!1m$~r2rB!TB~r2rB!21%.
~2.31!

The minimizing valuer for fixed m is given by the solution
of the linear equations

A~r2rA!1mB~r2rB!50. ~2.32!

Writing this as

A~r2rA!1mB~r2rA1rA2rB!50,

we have that

$A1mB‰~r2rA!5mB~rB2rA!. ~2.33!

We also have that

$A1mB‰~r2rB!52A~rB2rA!. ~2.34!

As the multiplierm must be positive, the matrix$A1mB‰
must be positive definite and hence nonsingular. Thus

r2rA5m$A1mB‰21B~rB2rA! ~2.35!

and

r2rB52$A1mB‰21A~rB2rA!. ~2.36!

We can derive an equation form by substituting Eq.~2.36!
into the constraint~2.30! to obtain

~rB2rA!TAˆA1mB‰21BˆA1mB‰21A~rB2rA!51.
~2.37!

We can simplify the matrix product

H5AˆA1mB‰21BˆA1mB‰21A

by computing its inverse as

H215A21$A1mB‰B21BB21$A1mB‰A21

or

H215$B211mA21%BˆB211mA21%, ~2.38!
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so that the constraint~2.37! simplifies to

@$B211mA21%21~rB2rA!#TB21@$B211mA21%21

3~rB2rA!]51, ~2.39!

which we may write as

XTB21X51, ~2.40!

where the vectorX is the solution of the linear equations

$B211mA21%X5~rB2rA!. ~2.41!

The value of the object function~2.29! is then given by

SA5m2~rB2rA!TBˆA1mB‰21AˆA1mB‰21B~rB2rA!,

which may be simplified by computing the inverse of the
matrix product

BˆA1mB‰21AˆA1mB‰21B

as$B211mA21%AˆB211mA21%.

The value of the object function is then

SA5m2XTA21X. ~2.42!

This quantity also represents a measure of the proximity of
the two surfaces of the two ellipsoids. The computational
problem involved in calculating it consists of solving the
nonlinear algebraic equation~2.40! for the parameterm,
where the vectorX is given by the linear equations~2.41!.
When this has been solved, the value ofm thus found and the
components of the vectorX are inserted into Eq.~2.42!.

III. PROPERTIES OF THE ECP AND THE GOP

The nature of the contact function discussed in the pre-
ceding section enables us to define a set of potentials analo-
gous to the Gaussian overlap potential. In this section, we
give this definition and deduce some consequences of it.

A. Definition

The potential function for the interaction of structureless
particles situated at two pointsrb ,ra is a function of the
scalar separation

R5~RTR!1/25$~rb2ra!
T~rb2ra!%

1/2 ~3.1!

or better still of its squareR2. We write this potential as

f~R2/s2!. ~3.2!

Heref is any scalar function ands is a scalar length pa-
rameter expressing the extent of the particle cores. If we
evaluate the ellipsoid contact function in the limit where the
lengths of all semiaxes become equal, then we have seen in
Sec. II B 1 that the contact function takes the form

R2/~2a!2. ~3.3!

This suggests that we can derive a family of nonspherical
potentials for particles with ellipsoidal cores analogous to the

GOP by replacingR2/s2 in Eq. ~3.1! with the contact func-
tion F(A,B). Thus our nonspherical potentials are of the
form f„F(A,B)…. If we choose forf the Lennard-Jones po-
tentialfLJ(r 2/s2), then the explicit form of the contact po-
tential is

fECP~A,B!54e@F~A,B!262F~A,B!23#. ~3.4!

As remarked in the Introduction, this potential is analogous
to the Gaussian overlap potential, the difference being that it
has the correct additive collision parameters for dissimilar
particles.

B. Computation of forces between ECP molecules

It is relatively straightforward to compute partial deriva-
tives of these functions with respect to the coordinates rep-
resenting the positions and orientations of the ellipsoids to
obtain the corresponding generalized forces. We note the de-
rivatives

fR„F~A,B!…5f8„F~A,B!…FR~A,B!,

fui
„F~A,B!…5f8„F~A,B!…Fui

~A,B!,

where

FR~A,B!52l~12l!X ~3.5!

and

Fui
~A,B!52l~12l!~XTui !X, ~3.6!

where we have used the extremal property of the contact
functionF with respect tol.

C. The formula for the second virial coefficient
and the principle of corresponding states

The ECP has the interesting property that we may com-
pute its second virial coefficientB2

ECP analytically, at least
for molecules with a symmetry axis. We define the Boltz-
mann factorBECP(A,B) as

BECP~A,B!5exp@2fECP~A,B!/~kBT!#, ~3.7!

B2
ECP5

1

2E dR^12exp@2fECP~A,B!/kBT#&, ~3.8!

where^ & denotes an average over the orientations ofA,B.
Now we note that the contact function can be written as

F~A,B!5R2f ~A,B!, ~3.9!

where f (A,B) can be computed from Eq.~2.12! as

f ~A,B!5lm~12lm!rT@~12lm!A211lmB
21#21r .

~3.10!

This depends only on orientations, so that

B2
ECP5

1

2E dR^12exp@2fLJ
„R2f ~A,B!…/kBT#&

~3.11!
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We now choose a particular direction forR and interchange
the order of integration and averaging to obtain

B2
ECP52pK E

0

`

R2dR$12exp@2fLJ
„R2f ~A,B!…/kBT#%L .

~3.12!

We now make the change of variable

z5Rf~A,b!1/2

to obtain

B2
ECP52p^ f ~A,B!23/2&E

0

`

z2dz$12exp@2fLJ~z2!/kBT#%.

~3.13!

To compute the value of

2p^ f ~A,B!23/2& ~3.14!

consider the problem of computing the second virial coeffi-
cient of hard ellipsoids, given by

B2
HE52pK E

0

`

R2dR@12Q„R2f ~A,B!…#L , ~3.15!

whereQ(x) is the usual Heaviside step function. This inte-
gral may be written as

B2
HE52pK E

0

f ~A,B!23/2

R2dRL ~3.16!

52p^ f ~A,B!23/2&/3. ~3.17!

Now the quantity

E
0

`

z2dz$12exp@2fLJ~z2!/kBT#% ~3.18!

is usually written as 3B2
LJ , i.e., three times the reduced sec-

ond virial coefficient for the Lennard-Jones potential. Thus

B2
ECP5B2

HEB2
LJ. ~3.19!

Note that the first term on the right-hand side is a function of
the core parameters only, whereas the second is a function of
the reduced temperaturekBT/e only. This implies that the
second virial coefficient of the ECP satisfies a form of the
law of corresponding states.

D. Perturbation theory for the ECP

We begin by splitting the intermolecular potential
fECP(A,B) at each orientation into a monotonic repulsive
reference potentialfR

ECP(A,B) and an attractive perturbation
potential fA

ECP(A,B) according to the Weeks-Chandler-
Andersen scheme@17#. We have that

fR
ECP~A,B!5H e1fECP~A,B!, R,R*521/6f ~A,B!21/2

0, R.R*

fA
ECP~A,B!5H 2e, R,R*521/6f ~A,B!21/2

fECP~A,B!, R.R* .
~3.20!

Then, to first order, the free energyF of the system is given
by

F/NkBT5FR /NkBT

12prbE
0

`

r 2^gR
ECP~A,B!fA~A,B!&A,BdR,

~3.21!

wherer is the number density,b is 1/kBT,R is the distance
between the centers of the molecules,gR

ECP(A,B) is the pair
correlation function for the reference system and the symbol
^ &A,B denotes an average over the orientations of particles
A,B. The evaluation of Eq.~2.1! requires a knowledge of the
functiongR

ECP(A,B).

1. Perturbation of the reference system about a system
of hard ellipsoids

We now attempt to relate the reference free energyFR to
the free energyFE of a suitably chosen assembly of hard
ellipsoids. The natural choice is that the two axis ratios
ai /a1 of the underlying hard ellipsoids should be the same as
the corresponding quantities for the ECP. The energy of in-
teraction of two such ellipsoids is infinite if they overlap and
zero if they do not. We may write the Boltzmann factor for
this potential as

BHE~A,B!5Q„R2 f ~A,B!21/2
…, ~3.22!

whereQ(x) is the usual step function. Following Kohler
et al.we have to first order

bFR
ECP2bFHE52prE

0

`

R2^yHE~A,B!$BHE~A,B!

2BR
ECP~A,B!%&A,BdR, ~3.23!

whereBR
ECP(A,B) is the Boltzmann factor for the reference

potential andyHE(A,B) is the so-called indirect correlation
function for the ellipsoid system, defined as

gHE~A,B!5yHE~A,B!BHE~A,B!. ~3.24!

2. Perturbation of the hard ellipsoid system about a system
of hard spheres

We complete the perturbation scheme by relating the
properties of the hard ellipsoid system to those of an equiva-
lent system of hard spheres. The compressibility of the hard
ellipsoid system is given by

FkBT]r

]PG
HE

5114prE
0

`

^gHE~A,B!21&A,BR
2dR.

~3.25!

A similar relation holds for a system of hard spheres, viz.,
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FkBT]r

]PG
S

5114prE
0

`

@gS~R!21#R2dR. ~3.26!

If we now make the approximation that

yHE~A,B!5yS~R!5yR
ECP~A,B!, ~3.27!

whereyS is the indirect correlation function for an equivalent
hard sphere system, then we may subtract Eq.~3.26! from
Eq. ~3.25! to obtain

FkBT]r

]PG
HE

5FkBT]r

]PG
S

14prE
0

`

yS~r AB!

3$^BHE~A,B!&A,B2BS~R!%R2dR.

~3.28!

The interested reader is referred to Ref.@13# for details of
how the size parameters of the reference hard ellipsoid and
sphere are to be chosen.

E. Computation of orientational averages

Implementation of the various formulas in Sec. III D re-
quires the evaluation of a number of orientational averages.
We describe how this may be done.

First we need to compute the expressions

^BR
ECP~A,B!&, ^BR

ECP~A,B!fA
ECP~A,B!&.

The scaling property of the contact function can be exploited
to reduce the potentially expensive computational overhead
implied in calculating these averages, which are required for
each separationR at the grid points needed for the computa-
tion of the integrals. This overhead is reduced by the scaling
property of the contact function. The values of the angle-
dependent parts need only be computed once at the orienta-
tions specified by the integration rule used to compute the
integrals over orientations and can then be stored in a table.

Second we need to compute the expression

^fA
ECP~A,B!&.

For values ofR greater than 27/6a3 in the case of prolate
ellipsoids, where

fA
ECP~A,B!5fECP~A,B!,

the ECP may be written as

fECP~A,B!54e@R212f ~A,B!262R26f ~A,B!23#,

so that

^fA
ECP~A,B!&54e@R212^ f ~A,B!26&2R26^ f ~A,B!23&#.

This is a very useful property, as the orientational averages
^ f (A,B)26& and ^ f (A,B)23& are independent of separation
and need only be computed once. Thus the computational
overhead for calculating contributions to the integral are as-
ymptotically the same as those of the Lennard-Jones poten-
tial. Finally, the computation of̂BHE(A,B)& can be accom-
plished by approximating it as a tenth degree polynomial in
R using the algorithm discussed in Ref.@13#.

IV. CONCLUSION

We have thus shown that the contact function for ellip-
soids gives a better physical basis for overlap potentials than
the original probabilistic model, which leads to the incorrect
collision diameter for mixtures of hard spheres. An analytic
expression for the second virial coefficient for the improved
overlap or ellipsoid contact potential is derived and shown to
satisfy a principle of corresponding states.
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