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Ellipsoid contact potential: Theory and relation to overlap potentials
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We propose and analyze the properties of a simple, computationally efficient pair potential for nonpolar
molecules based on the contact function for ellipsoidal cores. We discuss the relation of this potential to the
Gaussian overlap potential and show that the present potential gives the correct extension of the ideas of the
Gaussian overlap potential to mixtures. We show that this potential obeys a form of the principle of corre-
sponding states and derive an expression for the second virial coefficient. As this potential has an incorrect
symmetry at large separations, we derive another contact potential that behaves isotropically at infinite sepa-
ration. Unfortunately, this potential does not have the good computational features of the one investigated here.
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I. INTRODUCTION where G’ is a matrix whose elements have the units of
length squared and depend on the lengths and orientations of
There is now a considerable amount of literature in whichthe three principal semiaxes for the shape ellipsoid of each
models of soft potentialgl] between nonspherical molecules molecule.
are used for simulating the behavior of simple molecules and The (simplest version gfGOP is then obtained by replac-
liguid crystals[2—4]. A number of these models,6] are  ing the square of the scaled length of a spherically symmetric
extensions of the original Gaussian overlap poterfttOP  potential by the negative of the argument of the exponential
originally proposed in Ref.7]. Our interest in this potential in the joint probability distribution. For example, if we write
became aroused by a work by Singhal. [8] reporting the  the Lennard-Jones potential as
implementation of a perturbation theory for a model fluid 2 26 2 o3
described by it, ascribing to the GOP a geometric signifi- 4el(ra®) = (ro%) 7], (1.2
cance that it does not have. We therefore thought it importa
to report the theory of a more general potential, the ellipsoi
contact potentialECP), based on the contact functi$®,10] 4e[(R'G' 'R) 8 —(RTG'"'R)%]. (1.3
for hard ellipsoids, to which the GOP is an approximation. In
the body of the article, we will demonstrate that although then the original version, the parameteris also orientation
GOP is a reasonable approximation for not too eccentriélependent, but this is rather weak. We will retain the orien-
identical particles, it has serious problems when extended itation independence of partly because it entails certain
an obvious way to mixtures. computational advantages, partly because potentials of the
It should be remarked that a preliminary version of thisform (1.3) satisfy a form of the principle of corresponding
work has circulated around for some time. Some of the restates, and partly because the physical interpretation of the
sults have been stated and used in a recent aftidle but  angle dependence of theis more obscure than that of the
there is no full report in the literature of the complete formu-Separation parameter.
lation of the ECP, nor does Reff11] stress the problems  Even though the idea behind the GOP is physically attrac-
associated with naively applying Gay-Berne potentials tdive, the argumenR'G’ ~'R of the probability function does
nonidentical particles. not have a cleageometricinterpretation. This lack of inter-
The genesis of the GOP is to consider the joint probabilitypretation has led Singét al.[8] into the trap of giving it one
distribution for two three-dimensional asymmetric Gaussiaranyway. If we writeR=RR, whereR is a unit vector, then
distributions centered around two points, which are the mo- S AT )1
lecular centroids. This is itself a Gaussian distribution of the R'G'""R=R°R'G'"'R. (1.4

components of the vector connecting the molecular centerg,, constructing a perturbation theory with a nonspherical ref-

If R denotes this vector, then the distribution function is_ ..o system, these authors mistakenly interpret the dis-
proportional to tance

g}len the constant energy GOP is

exp—RTG’"IR), (1.1 U:(éTGr*lé)fllz (1.5
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as the distance of closest approach of two ellipsoids with.e., the product of the(temperature-independg¢nsecond
fixed orientations. In the main body of this article, we showvirial coefficientB4* for hard ellipsoids with the same semi-
that R"G’ 'R is an approximationto the contact function axes as that of the ellipsoidal core and the reduced second
for ellipsoids, which has been discussed elsewhere. Whereggial coefﬁcientB'gJ(kBT/e) for the Lennard-Jones potential.

it is a good approximation in the case of two not too asym-Many real molecular gases satisfy a relation of the form
metric ellipsoids with equal dimensions, we show that it is(1.10 and hence the principle of corresponding states. A
not in other cases. More explicitly, we show that the contactvord of caution is in order: the second virial coefficient for a
function F(A,B) for two ellipsoids labelech andB, which  model fluid consisting of two-center Lennard-Jones mol-

is given by ecules very closely satisfies a formula of the foftrl0).
The scaling of the contact function, which we may write
F(A,B)={maxS(\)|\ €[0,1]}, (1.6 in the form
whereS(\) is a non-negative function of the ellipsoid coor- F(A,B)=R?f(A,B), (1.1
dinates derived by Perram and Werth¢ is related to the
Berne-Pechukas function by the relation wheref(A,B) depends only on orientations, means that ori-

. 1 entational averages of the ECP can be written in the form
R'G'T*R=5(1/2). .7

-12 -6 -6 -3

The object function in the maximizatioil.6) has the form 4eRTAMAB) D -RTH([(AB) ] (112
where(F(A,B)) denotes an average over the orientations of
A andB. The orientation averages in E4..12 areindepen-
] ) o dent of separation RThese orientation averages are a major
so that the distance scaling of the contact function is the,mpytational overhead in the implementation of the pertur-
same as that of the GOP function, as shown in ).  pation theory with a nonspherical reference system. For this
Note thatG(1/2)=.G’.T i . potential, the three-dimensional integrals they imply need

Thus the functiorR'G’' "R is always anunderestimate op|y he performed once instead of at each separation, as is
of the contact function and hence the estiméité) of the  he' case with potentials such as the two-center Lennard-

intercenter distance at the tangency of the ellipsoidal cores i§ones(2CLJ) model for homonuclear diatomic molecules.

S(N)=4X(1-NMR'G(N) 'R, (1.9

an overestimateas has been noted ja2]. The accuracy of  This yseful property has its downside. We would expect
this estimate declines dramatically in the case when the tWehat the interaction of two nonpolar molecules would become
ellipsoids have different sizes or shapes. isotropic at large separation, meaning that the ratio of the

The geometry of the contact function can be understoognymerically largest and smallest energy should tend to 1.
by performing the following thought experiment. Focus onThjs is the case with the 2CLJ model, but not, for example,
one of the ellipsoidal bodies and consider one of the familyyith either the GOP or the ECP. As the contribution to ther-
of similar ellipsoids obtained from it. For this member of the modynamic functions from values of short-ranged potential
family, there will be a single member of the family of similar fnctions at large distances is negligible, this is something
ellipsoids obtained from the other ellipsoidal body that isyye can live with, especially if the potential better models the
tangent to it. The locus of points obtained by repeating thigorces between molecules in close proximity to each other.
operation for every member of the first family is a curve yowever, for the sake of completeness, we present the deri-
connecting the centers of the two ellipsoidal bodies. The 0bgation of another contact function for hard ellipsoids that
ject fgnpt|on(1.8) is a welghted sum of the q_uadratlc fqrms leads to a potential isotropic at large separations.
describing the two ellipsoids evaluated on this curve dlfit The only real test of empirical effective two-body poten-
is shown that this object function has a maximum value atjz|s is whether they work. In this context, “work” means
some point on the curve. This maximum value is the contacfat we are able to find constafdr almost constaptvalues
function, which, although it is a measure of the proximity of of the potential parameters that are able to reproduce the
the two ellipsoidal bodies, cannot be related in any simpléyroperties of real substances over large ranges of temperature
way to a collision diameter unless the axes of the two ellip-yq pressure. An even more stringent test is whether the

soids are parallel. _ _ potential parameters can then reproduce the properties of
This leads us to propose a variant of the GOP, which wepixtures.

call the ellipsoid contact potential, in which we replace the s potential should be well suited to a varidag] of
square of the scaled distance in the Lennard-Jones potentidle Kohler-Quirke-Perram perturbation thedfyd] for non-

by the contact function of ellipsoidal cores polar molecular fluids. We are currently using this theory to
6 3 extract ECP potential parameters from equation of state data
4¢€[(F(A,B)) °—(F(A,B))""]. (1.9 for simple molecular fluids such as nitrogen. The results of

_ ) these investigations will be reported elsewhere.
Potentials of the form{1.3) or (1.9) have a couple of inter-

esting properties. The first is that the second virial coefficient
obeys a type of principle of corresponding states. For Eq.
(1.9), the value of the second virial coefficient is

II. THE CONTACT FUNCTION
FOR ELLIPSOIDS REVISITED

ECP. HEL L) Although the contact function for ellipsoids has been de-
Bz =B Bz (kgT/e), (1.10  rived elsewherd9], we sketch here some of its principal
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properties, as well as generalize and simplify some of itso that
consequences. o Ta—im_ s (1 -
S(N)=A(1-NMN)R'GT"R=N(1-MN(G "R)'R. (2.7
A. Definition of the contact function After a certain amount of algebra, the result of differentiating
Consider two ellipsoids labeled and B with semiaxes equation(2.7) is

a,,a,,a; andb,,b,,bs, respectively. Let us suppose for the 1T A1 N 2mdr~—1

time being that all six of these semiaxes are positive. The FFN=(GTRIH(1-N)A""=N\"B G'R. (2.8
rotational state of the ellipsoids is conveniently expressed b
giving the setsu;,u,,us andvy,v,,vs of orthonormal unit
vectors along the principal axes of the two ellipsoids. If the
centers are at,,r,, respectively, we define the intercenter

vector GX=R, (2.9

¥he only computational task of any complexity is to compute
G~ IR, which is most simply calculated a§ the solution of
the 3X 3 system of linear equations

R=rp—ra. (2. so that
Let us define the matrices S(M)=A(1—M)RTX.

T Although the form of the object function is complicated, its
A=, a 2uuy (2.23 - : - - :
7 ' calculation proceeds quite rapidly. An alternative algorithm
for rapid computation of the contact function is giverj 12].
If we denote by\,, the value of\ for which the maxi-
B=, b vy . (2.2  mum of Eq.(2.5 occurs and use the forit2.4a, then the
K contact function is

In the case where none of the semiaxes vanish, these matl’i-F(A,B):)\m(l_)\m)éT[(l_)\m)Afl_F)\mel]fléRZ.

ces have the inverses (2.10
—1_ 2, T Note that the value ok, is independent of the separation
A EK Acthcth» (239 R. This has the computationally useful property that the ori-

entational average of any power B{A,B) is a function of

1 5 1 R times the orientational average of a single function of ori-

B :; bicVivy - (2.3b entations, which therefore need only be performed once.
Other potentials, such as the 2CLJ, do not have this property

Perram and Wertheirf9] then derived the object function [14], so that the implem_entation of p_erturbatipn theories for
them are much more time consuming. Setting the contact
SIN=N1-MRT(1-MA+AB IR (2.9 function in Eq.(2.10 to unity and solving for the valuB*
of R at which this occurs, we have for the separation of the

=N(1—MRT(1—N)A14+AB 1] 1RR?, cores at contact
2.4 - -
( ) R*:{)\m(l_)\m)RT[(l_)\m)Ail"’)\mBil]ilR}il/Z.
where\ is a parameter. It may be easily seen tBat) is (2.1

non-negative fol €[0,1]. Then a contact functiof (A,B)

for the two ellipsoids is To establish the relationship between the contact function

and the function(1.4) appearing the GOP, we need to gen-
F(A,B)={maxS(\)|\ e[0,1]}. (2.5 eralize the original derivation of Berne and Pechukas. We
wish to derive a general algorithm for the computation of the
If F(A,B)<1 the two ellipsoids overlap, E(A,B)>1 they ~ Gaussian overlap potential in the case wfigithe ellipsoids
do not, and ifF (A,B) =1 they are externally tangent. In Ref. are not necessarily identical arid) the ellipsoids do not
[9], it was proved that the functioB(\) is concave down for Necessarily have a symmetry axis. We have also taken the
\ €[0,1]. Taken with the property th&(\) is non-negative liberty of employing the notation we use for the discussion
in [0,1] and zero at both end points, this has the importan®f the ellipsoid contact function. Consider the quadratic form
(r;:)L:]r‘?]ei?]ut?]r;Cﬁ’]:gl?jatF()e,ﬁPjeCt funct®\) has a single maxi P(s)=1[sTAs+ (s—R)TB(s—R)] (2.12
The concavity property o§(A) guarantees that Brent's of the vectors. The derivation of the GOP involves comput-
method[15] will converge superlinearly to the unique maxi- jng the integral
mum. However, optimization schemes can sometimes be
speeded up if the derivative of the object function can be _ T T
computed quickly, although this was not our experience. Thé(R'U*V)_CJ J f dsexp —z[s'As+(s—R) 'B(s—R)]},
value of f"(\) may be computed as follows. Let us define (2.13

the matrix _ _ o
whereu,v stand for the two triplets of unit vectors defining

G=(1-NA"1+AB7 1, (2.6 the principal axes an@ is the normalization constant of the
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probability distribution represented by the integrand in Eq.

(2.13. To evaluate this integral we write

s'As+(s—R)"B(s—R)=(s—R*)"E(s—R*)+g
(2.14

and attempt to find values of the matix the vectorR*,
and the scalag. Clearly

E=A+B. (2.19
Expanding and equating coefficients, we find that
S'ER*=s'BR,
giving
R*=E"!BR. (2.16
Finally,
g=R"{A"1+B 17 IR, (2.1

The value of the integral2.13 is then

I(R,u,v)=Ce (V2RTA™T+BY IR

Xf f fds e—(llz)(s—R*)TE(s—R*).

Shifting the origin of coordinates, this is

I(R,u V):Ce—(l/Z)RT{A’1+B’1}’1Rf f f ds e~ (U2s'Es.
(2.18

Let wy,w,,w; be the eigenvectors of thpositive definitg
matrix E with corresponding (positive eigenvalues
N1,N5,N3. If we denote bye;,e,,e; the corresponding unit
vectors in the laboratory frame, then the unitary matrix

D=2 we

diagonalizesE. Performing standard manipulations, the

value of the integral can be evaluated to give the result

I(R,u,v)=Ce (M2RHAT B 'Rrg 13/ dey E) 12
(2.19

The negative
(2.20

of the argument of the exponential function in £8.19 is
precisely equal to the right-hand side of Ef.4) evaluated

;RYATI+B IR

with A=1/2. By the maximal property of the contact func-
tion, the quantity(2.20 is always bounded above by the

contact function. Alternatively, we can write ER.20 in
the form

IRYA 1+B 3" 1R=L1RT{A 1+B 1 !RR?
(2.21)

and interpret the quantity
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o(R,uv) 2=1RT{A"1+B 1" 1R (2.22

as the inverse square of an orientation-dependent collision
parameter or proximity measure. In faet,is only the dis-
tance of closest approach when the axes of the two ellipsoids
are parallel

ai:bi

and the shape ellipsoids are not too eccentric. Then the value
of X at which the maximum of occurs will lie close to 1/2 for

many configurations, so that the quantityR,u,v) 2 will
not be too different from the contact function. This is, of
course, generally not the case, so that no geometrical inter-

pretation should be put on(R,u,v) 2. In Sec. Il B, we give
an example illustrating this point.

B. Degenerate cases

We achieve a couple of interesting results for special val-
ues of the axis ratios.

1. Spheres

If all the semiaxes ofA are equal toa and all those of
B are equal td, then the matrice#,B have the form

A=a"2> uui=a?,
X

B=b"2> v i=b"2,
X

so that the matribxG is given by
G=[(1—))a%+\b?]l.
The object functior5(\) is then given simply by
SIM=M1-M[(1-Na?+rb?] 'RTR. (2.23
The maximum value of this function occurs when
A=al(a+b)
and is is easily calculated to be
R'R[a+b] 2,

which is the square of the intercenter distance divided by the
square of the sum of the radii. This is, of course, a natural
contact function for spheres. This should be compared with
the value of the GOP collision parameter

(1/2)(a?+b?) L. (2.29
This value is, of course, unphysical. Thus the GOP, as it
stands, has no natural generalization to mixtures.

2. Ellipses

The results of this section cease to be valid when one or
more of the ellipsoid semiaxes becomes zero. In this event
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the matrixG will become singular ak =0 and/orx=1. This  tion relies on the fact that the Cartesian equation of the sur-

case has been analyzed in detail elsewh&gand we give face of an ellipsoid is a quadratic form, so there are no other
the principal results here. closed surfaces apart from ellipsoids for which this type of

Suppose that one of the semiaxassay, of the ellipsoid ~contact function can be derived.
A is zero. Then the matri is singular whem =0. In this _ o ) )
event the value of (0) may be shown to bEL6] A contact function that is isotropic at large separations

Another contact function may be obtained by considering

— TR 2/ TR-1
f(O)=(u/R)“u/B""u;, (229 the pointr on the surface of ellipsoid for which the value
whereas ifA is nondegenerate but one of the semiaxes OPf the quadratic form
B,b; say, is zero, the is singular wher. =1 and the value Sa=(r—rp)TA(r—rp) (2.29
of f(1) is
Tear Tr 1 is a minimum. That is, we seek to minimize the right-hand
f()=(viR)TIViA™ ;. (226 side of Eq.(2.29 subject to the constraint
The cases when two semiaxes/for B (but not both are Sg=(r—rg)'B(r—rg)=1. (2.30
zero and the ellipsoid degenerates to a line segment are also
discussed in Ref16]. If a;=a;=0, then This problem may be solved using the method of Lagrange
multipliers by taking the gradient with respect toof the
f(0)=a;RTu;+o;R"u;, (2.27  function
wherea; , «; are given as the solution of the linear equations ~ S*=(r—ra)"A(r—ra) +u{(r—rg)'B(r—rg)—1}.
(2.3)
[UiTB_lui]Ofi+[U?—B_1Uj]aj:UiTR, L. . i i i
The minimizing valuer for fixed w is given by the solution
[ujTB‘lui]ai +[ujTB‘1uj]aj = ujTR. of the linear equations
The corresponding result when the ellips@ds doubly de- A(r—ra)+uB(r-rg)=0. (2.32
generate ands is singular whem\ =1 may be obtained by Writing this as
symmetry considerations. The case when each ellipsoid has a
degenerate axis will not generally occur in practice and we A(r—rp)+uB(r—ra+ra—rg)=0,
do not discuss it here.
we have that
C. Computation of the contact function _
_ _ o {A+uBHr—rp)=puB(rg—ra). (2.33
The most convenient numerical method for finding the
contact function is the obvious one. We begin by computing/Ve also have that
the elements of the matrices
{A+uBHr—rg)=—A(rg—ra). (2.34
A=Y aZuu), As the multiplier » must be positive, the matrigA + uB}
K must be positive definite and hence nonsingular. Thus
—ra=p{A+uB} B(rg— :
B 1= b2vy, r—ra=u{A+uB} "B(rg—ra) (2.39
K
and
noting that they are symmetric, so that only six elements of F—rg=—{A+uB} A(rg—r,). (2.3

each are required. For each value)ofn the open interval

[0,1], compute the six necessary elements of the symmetrigye can derive an equation far by substituting Eq(2.36)

matrix G and compute the solutioX of the linear equations jnto the constraint2.30 to obtain

(2.9). It does not seem to make very much difference to the

time required whether we use the explicit solution or use a  (rg—ra) 'A{A+ uB} 1B{A+ uB} *A(rg—r,=1.

Gauss-Jordan elimination routine. A systematic method for (2.37

locating the maximum is then given by Brent's metad].
Alternatively, we may iterate towards the maximum by

applying a root finding technique to the equati¢h8) for

f’(\), written as

We can simplify the matrix product
H=A{A+ uB} 'B{A+uB} A

() =XT[(1=\)2A"1-\2B~1X. (2.29 by computing its inverse as

-1_p-1 -1 -1 -1
We conclude this section by noting that when one of the H A H{ATuBIB BB AT LBIA
ellipsoids is degenerate, the object function can be monogr
tonic and its maximum may occur at an end point. We also
note that the method of obtaining the ellipsoid contact func- H =B 1+ uA 1B{B 1+uA" 1}, (2.39
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so that the constrain®.37) simplifies to GOP by replacindR?/ o in Eq. (3.1) with the contact func-
. P Tl o1 P tion F(A,B). Thus our nonspherical potentials are of the
B~ +uA" 7} (rg—ra) ] B"[{B" "+ uA™T} form ¢(F(A,B)). If we choose forg the Lennard-Jones po-
tential -(r?/a?), then the explicit form of the contact po-
X(rg=ra)l=1, (2.39  tential is
which we may write as ¢ECP(A,B)=4E[F(A,B)_6_F(A,B)_S]. (34)
X™B~1x=1, (2.40

As remarked in the Introduction, this potential is analogous

where the vectoK is the solution of the linear equations (O the Gaussian overlap potential, the difference being that it
has the correct additive collision parameters for dissimilar

(B 1+ uA " BX=(rg—ra). (2.41)  particles.
The value of the object functio(®.29 is then given by B. Computation of forces between ECP molecules
Sa=u2(rg—ra) "B{A+ uB} A{A+ uB} 1B(rg—rp), It is relatively straightforward to compute partial deriva-

tives of these functions with respect to the coordinates rep-
which may be simplified by computing the inverse of theresenting the positions and orientations of the ellipsoids to
matrix product obtain the corresponding generalized forces. We note the de-

rivatives
B{A+ uB} A{A+uB} 1B

aS{Bil‘F,u,Ail}A{Bil‘f—,u,Ail} ¢R(F(A!B))= d),(F(A!B))FR(AvB)!

The value of the object function is then ¢u(F(AB))='(F(AB))Fy(AB),

SAZ,(LZXTA_lx. (242) where

This quantity also represents a measure of the proximity of Fr(A,B)=2N(1-M)X 3.9

the two surfaces of the two ellipsoids. The computational
' ) R . : and

problem involved in calculating it consists of solving the

nonlinear algebraic equatio(2.40 for the parameteru, Fo(AB)=2\(1—-N)(XTu)X, (3.6

where the vectoX is given by the linear equation®.41). :

When this has been solved, the valuguothus found and the  \yhere we have used the extremal property of the contact
components of the vectot are inserted into E¢2.42). function F with respect to\.

Ill. PROPERTIES OF THE ECP AND THE GOP C. The formula for the second virial coefficient

The nature of the contact function discussed in the pre- and the principle of corresponding states
ceding section enables us to define a set of potentials analo- The ECP has the interesting property that we may com-
gous to the Gaussian overlap potential. In this section, weyte its second virial coefficierB5°" analytically, at least
give this definition and deduce some consequences of it. for molecules with a symmetry axis. We define the Boltz-
mann factorBER(A,B) as

A. Definition

ECP, _ _ JECP
The potential function for the interaction of structureless BE(AB)=exil — ¢7(AB)/(ksT)], 3.7

particles situated at two points,,r, is a function of the

. 1
scalar separation BECF’:EJ dR(1—exd — #5°F(A,B)/kgT]), (3.8
R=(RTR)Y2={(rp—r)T(rp—ra)}*? (3.1
Hre=ra) (Fo=ral} where( ) denotes an average over the orientation$\@.
or better still of its squar®?. We write this potential as Now we note that the contact function can be written as
& (R?/0?). (3.2 F(A,B)=R?f(A,B), (3.9

Here ¢ is any scalar function and is a scalar length pa- wheref(A,B) can be computed from E¢2.12 as
rameter expressing the extent of the particle cores. If we

evaluate the ellipsoid contact function in the limit where the ~ f(A,B)=Np(1-Np)r [(1=Ap) A" N B 1] 7M.
lengths of all semiaxes become equal, then we have seen in (3.10

Sec. 11 B 1 that the contact function takes the form . . .
This depends only on orientations, so that

R?/(2a)?. (3.3

1
ECP_— _ L2
This suggests that we can derive a family of nonspherical B2 ZJ dR(1=exi] — ¢~ (R°F(A,B))/kgT])
potentials for particles with ellipsoidal cores analogous to the (3.11
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We now choose a particular direction ferand interchange e+ ¢FCFA,B), R<R*=2Y%(A B) 17

the order of integration and averaging to obtain ECP(A,B)= 0 R>R*

BECF’=2W< f R2dR{1—expf — 4(R2 (A,B))/kgT1} ). eop p | & RERT=2T°H(AB) 1

° A (AB=| jecra gy, R>RE. (3.20
(3.12 T
. Then, to first order, the free energyof the system is given
We now make the change of variable by
z=Rf(A,b)¥? F/NkgT=Fgr/NkgT
o obtain +2mpp f r2(gr(A,B) $a(A,B))a sdR
0

ECP_ —a [ F 2 _ _ L2 (3.2)

B5“"=27(f(A,B) %% | Z2dZ1—exd — ¢"(z?)/kgT]}.
0

(3.13 wherep is the number density3 is 1kgT,R is the distance
between the centers of the moleculg§s™(A,B) is the pair

To compute the value of correlation function for the reference system and the symbol
( )ap denotes an average over the orientations of particles
2m(f(A,B) "33 (3.14  A,B. The evaluation of Eq2.1) requires a knowledge of the

function g;“"(A,B).
consider the problem of computing the second virial coeffi- )
cient of hard ellipsoids, given by 1. Perturbation of the reference system about a system
of hard ellipsoids

HE_ c ) We now attempt to relate the reference free endérgyo
By =27 fo RAR[1-ORT(AB)]), G139  the free energyFg of a suitably chosen assembly of hard
ellipsoids. The natural choice is that the two axis ratios
a;/a, of the underlying hard ellipsoids should be the same as
the corresponding quantities for the ECP. The energy of in-
teraction of two such ellipsoids is infinite if they overlap and
zero if they do not. We may write the Boltzmann factor for

HE f(AB)"%2_, : d
By =2m R2dR (3.1 this potential as
0
Bre(A,B)=0(R—f(A,B)"*?), (322

where®(x) is the usual Heaviside step function. This inte-
gral may be written as

- -3/
=2m(f(A,B)"¥9/3. 317 where O(x) is the usual step function. Following Kohler

) et al. we have to first order
Now the quantity
. BFR™"— BFue=2mp f R*(Yre(A,B){Bye(A,B)
f 22dz{1—exd — ¢p™(z))/KkgT]} (3.18 0
0
—BRCUAB))agdR, (3.23

is usually written as B, i.e., three times the reduced sec- \yhere BECF(A,B) s the Boltzmann factor for the reference
ond virial coefficient for the Lennard-Jones potential. Thus potential andy,=(A,B) is the so-called indirect correlation

function for the ellipsoid system, defined as

gHe(A,B) =YHe(A,B)Be(A,B). (3.29

B5CP=BHEBYY. (3.19

Note that the first term on the right-hand side is a function of _ o
the core parameters only, whereas the second is a function of 2. Perturbation of the hard ellipsoid system about a system

the reduced temperatuigT/e only. This implies that the of hard spheres
second virial coefficient of the ECP satisfies a form of the e complete the perturbation scheme by relating the
law of corresponding states. properties of the hard ellipsoid system to those of an equiva-
lent system of hard spheres. The compressibility of the hard
D. Perturbation theory for the ECP ellipsoid system is given by
We begin by splitting the intermolecular potential ap ®
$EC(A,B) at eachEggentation into a monotonic repulsive KeT-5 =1+477Pf0 (gne(A,B)— 1) gR?dR
HE

reference potentiapg~"(A,B) and an attractive perturbation (3.29
potential ¢5°F(A,B) according to the Weeks-Chandler- '
Andersen schemgl7]. We have that A similar relation holds for a system of hard spheres, viz.,
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Second we need to compute the expression
(R°AB)).
If we now make the approximation that For values ofR greater than %%a; in the case of prolate
ECP ellipsoids, where
yHE(A,B):yS(R):yR (A!B)l (32D

whereyg is the indirect correlation function for an equivalent
hard sphere system, then we may subtract B26 from  the ECP may be written as

Eqg. (3.25 to obtain SECPA.B) = 4€e[R-12F(A,B)5—R-5f(A,B) 3],

—+4wpfwysUAB) so that
0
S ($ECT(A,B))=4[R™XF(A,B) ) —R 8(f(A,B) 3]

ap
|:kBT(9_P

:1+47rpr[gs(R)—1]R2d R. (3.2
s 0

ECF(A,B) = #E°R(A,B),

ap
P

ap
P

HE

kT kgT

X {(Bue(A,B))a 5~ Bs(R)}R*dR. o _ _
39 This is a very useful property, as the orientational averages
(328 (f(A,B) %) and(f(A,B)3) are independent of separation
The interested reader is referred to Rf3] for details of ~and need only be computed once. Thus the computational

how the size parameters of the reference hard ellipsoid an@verhead for calculating contributions to the integral are as-
sphere are to be chosen. ymptotically the same as those of the Lennard-Jones poten-

tial. Finally, the computation ofB,g(A,B)) can be accom-
plished by approximating it as a tenth degree polynomial in

E. Computation of orientational averages : ) 5 :
R using the algorithm discussed in REL3].

Implementation of the various formulas in Sec. 11l D re-

quires the evaluation of a number of orientational averages. IV. CONCLUSION
We describe how this may be done.
First we need to Compute the expressions We have thus shown that the contact function for eIIIp—
soids gives a better physical basis for overlap potentials than
(BEC(A,B)), (BEST(A,B)#ET(A,B)). the original probabilistic model, which leads to the incorrect

collision diameter for mixtures of hard spheres. An analytic
The scaling property of the contact function can be exploitecexpression for the second virial coefficient for the improved
to reduce the potentially expensive computational overheagverlap or ellipsoid contact potential is derived and shown to
implied in calculating these averages, which are required fogatisfy a principle of corresponding states.
each separatioR at the grid points needed for the computa-
tion of the integrals. This overhead is reduced by the scaling J.W.P., E.L.P., and J.R. acknowledge the financial support
property of the contact function. The values of the angle-of the Danish Science and Engineering Research Councils
dependent parts need only be computed once at the orientfior grants awarded under the FTU and PIFT programs. The
tions specified by the integration rule used to compute thdinancial support of the United States Air Force is also grate-
integrals over orientations and can then be stored in a tabléully acknowledged.
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