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What is a Classical Point Singularity?

On n + 1 dimensional space-time R1,n ∼= R× Rn with metric
η = diag(1,−1,−1...) and coordinates x = (x0, x1, x2, ...).

A point charge is represented by a future directed time-like curve
(“world-line”) z(θ) : R → R1,n, dz0

dθ > |dz⃗dθ |.
We will use the proper time parameterization z(τ) defined by
dτ =

√
ηµν żµżνdθ.

Associated to the particle is a mass m > 0, scalar charge α ∈ R,
velocity uµ := dzµ

dτ , and momentum pµ ∝ uµ.

Notation: Jump and Average:

f (z) = lim
ϵ→0

f (z + ϵ) + f (z − ϵ)

2
, [f ]x=z = lim

ϵ→0+
(f (z + ϵ)− f (z − ϵ))

(1)
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ηµν żµżνdθ.

Associated to the particle is a mass m > 0, scalar charge α ∈ R,
velocity uµ := dzµ

dτ , and momentum pµ ∝ uµ.

Notation: Jump and Average:

f (z) = lim
ϵ→0

f (z + ϵ) + f (z − ϵ)

2
, [f ]x=z = lim

ϵ→0+
(f (z + ϵ)− f (z − ϵ))

(1)

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 2 / 19



What is a Classical Point Singularity?

On n + 1 dimensional space-time R1,n ∼= R× Rn with metric
η = diag(1,−1,−1...) and coordinates x = (x0, x1, x2, ...).

A point charge is represented by a future directed time-like curve
(“world-line”) z(θ) : R → R1,n, dz0

dθ > |dz⃗dθ |.
We will use the proper time parameterization z(τ) defined by
dτ =

√
ηµν żµżνdθ.
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Scalar Point Charge

The scalar point charge acts as a source for the scalar field via

□U := ∂20U −∆U = α

∫
δ(n+1)(x − z(τ))dτ (2)
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Motion of Scalar Field Animation

Given initial data (V0,V1) and a charge trajectory z(τ), the solution for U
is well-known. 

□U = α
∫
δ(n+1)(x − z(τ))dτ

U
∣∣
x0=0

= V0

∂0U
∣∣
x0=0

= V1

(3)

Figure: Animation of scalar field sourced by a moving point charge in one space
dimension.
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(In)admissible Force Laws

We demand a joint evolution which preserves the total
energy-momentum of the field-particle system.

∂µ(T
µν
matter + Tµν

field) = 0 (4)

For fluids of sufficient regularity, cons of En-Mom returns an equation
of motion for the fluid.

It is often claimed that point singularities satisfy the EQ of motion for
fluid test-particles:

dpµ

dτ
= −α∂µU(z) (5)

∂µU cannot be evaluated along z(τ), joint evolution equations are
inconsistent.
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Inconsistency

It is sometimes claimed that we should ignore the singular
contribution of a particle to its own force law. This ignores
radiation-reaction.

Dirac [5] famously tried to derive an EQ of motion directly from
∂µT

µν
matter = −∂µTµν

field.

Problem: En-Mom of field sourced by point singularity in R3 is
changing at divergent rate for all time, Tµν

field ≈ 1
r4

Dirac invented infinite bare-mass renormalization to recover an
equation of motion for the point singularity.

Problem: Using Colombeau Algebra, Gsponer(2008) showed that one
can derive a large family of different particle force laws.
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Quantum Mechanical Cop-out

Shouldn’t we be modeling point particles using quantum theory?

QFT famously admits divergent quantities that can be traced back to
divergences in the classical theory of relativistic point charges.

Ex: Annihilation of quantum particle at origin in R3.

Non-Rel: i∂tψ = −∆ψ, lim
r→0

∂r (rψ(x⃗)) = ik lim
r→0

rψ(x⃗). (6)

Rel: i∂tψ = α⃗ · ∇ψ +mβψ, B.C only valid in 1 dim (7)
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State of Affairs

Kiessling[1] proposed in 2019 that the force law should be derived
directly from energy-momentum conservation

∂µ
(
Tµν
p + Tµν

U

)
= 0 (8)

Tµν
U := (∂µU)(∂νU)− 1

2
ηµν(∂µU)(∂µU). (9)

Tµν
p :=

∫
uµpνδ(n+1)(x − z(τ))dτ (10)

In dimensions n > 1, we expect □U = α
∫
δ(n+1)(x − z(τ))dτ to be

inconsistent with energy-momentum conservation [1,4].

Modify “vacuum law” to regularize sourced fields:

(1 +
1

κ2
□)□U = α

∫
δ(4)(x − z(τ))dτ K-T.Z[2],Hoang et al.[3]

(11)
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Conservation of Stress Energy-Momentum

Theorem (Force Law in 1 Space Dimension)

Suppose U satisfies □U = α
∫
δ(2)(x − z(τ))dτ on R1,1 where z(τ) is an

arbitrary time-like world-line.

Then assuming conservation of
energy-momentum

∂µT
µν
p = −∂µTµν

U , ν ∈ {0, 1} (12)

returns the unique force law

dpν

dτ
= −

[
nµT

µν
U (z0, x1)

]
x1=z1

. (13)

This force can be explicitly computed as

dpν

dτ
= −α∂νU. (14)
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Derivation of Force Law 1

∫
Ω
∂µT

µνdV =

∫
∂Ω

TµνNµdS (15)

Figure: Region of integration Ω and its normals
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Derivation of Force Law 1

∫
∂Ω

Tµν
p NµdS = pν(τ2)− pν(τ1) =

∫ τ2

τ1

dpν

dτ
dτ. (15)
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Derivation of Force Law 2

Lemma

Suppose U satisfies equation (3) with (U, ∂0U)
∣∣
x0=0

∈ C 0,1(R)× L∞(R)
and singular source concentrated on a time-like world-line z(τ). Then U is
of regularity C 0,1(R1,1), and ∂µU,T

µν
U ∈ L∞(R1,1).
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Derivation of Force Law 2

lim
ϵ→0

∫
∂Ω

Tµν
U NµdS =

∫ τ2

τ1

[
Tµν
U nµ(z

0, x1)
]
x1=z1(τ)

dτ (16)
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Analyzing Force Law

So weak conservation of energy-momentum returns

∫ τ2

τ1

dpν

dτ
dτ = −

∫ τ2

τ1

[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

dτ. (17)

as desired.

For (U, ∂0U)
∣∣
x0=0

smooth away from z1(0), we have

[∂µU]x1=z1(τ) = −αnµ (18)

The final force law dpν

dτ = −α∂νU follows from[
f 2(x1)

2

]
x1=z1

= [f ]x1=z1 f (19)

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 12 / 19



Analyzing Force Law

So weak conservation of energy-momentum returns∫ τ2

τ1

dpν

dτ
dτ = −

∫ τ2

τ1

[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

dτ. (17)

as desired.

For (U, ∂0U)
∣∣
x0=0

smooth away from z1(0), we have

[∂µU]x1=z1(τ) = −αnµ (18)

The final force law dpν

dτ = −α∂νU follows from[
f 2(x1)

2

]
x1=z1

= [f ]x1=z1 f (19)
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Force Law Consequences 1

Corollary

The force contribution of external scalar fields follows the standard law
satisfied by test charges.

F ν
ext = −α∂νUext. (20)

However, the singular “self-force” can now be determined, and the
expression for it guarantees the conservation of the system’s total
energy-momentum.

F ν
self = −α∂νUsource =

−α2uν

2
(21)
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Force Law Consequences 2

Theorem

For any set of particle parameters with positive bare mass and non-zero
real scalar charge, and for any “admissible” initial data, the joint initial
value problem given by

ηµν∂µ∂νU(x) = a
∫
δ(2)(x − z(τ))dτ

U(0, x1) = V0(x
1)

∂0U(0, x1) = V1(x
1),

(22)

{
dzν

dτ = uν

dpν

dτ = −
[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

.
(23)

admits a unique, global-in-time solution.
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ηµν∂µ∂νU(x) = 0
[∂µU]x1=z1(τ) = −αnµ

U(0, x1) = V0(x
1)

∂0U(0, x1) = V1(x
1),

(24)

{
dzν

dτ = uν

dpν

dτ = −
[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

.
(25)

admits a unique, global-in-time solution.
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Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

□U = α

∫
δ(2)(x − z(τ)dτ. (26)

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

The computed force law closely resembles the one satisfied by test
charges.

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.

Singularity in scalar field equation reinterpreted as Boundary
Condition along {x = z(τ)}.

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 16 / 19



Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

dpν

dτ
= −

[
nµT

µν(z0, x1)
]
x1=z1

. (26)

The computed force law closely resembles the one satisfied by test
charges.

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.

Singularity in scalar field equation reinterpreted as Boundary
Condition along {x = z(τ)}.

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 16 / 19



Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

The computed force law closely resembles the one satisfied by test
charges.

F ν
self = −a∂νUsource =

−a2uν

2
. (26)

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.

Singularity in scalar field equation reinterpreted as Boundary
Condition along {x = z(τ)}.

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 16 / 19



Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

The computed force law closely resembles the one satisfied by test
charges.

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.

Singularity in scalar field equation reinterpreted as Boundary
Condition along {x = z(τ)}.

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 16 / 19



Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

The computed force law closely resembles the one satisfied by test
charges.

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.

Singularity in scalar field equation reinterpreted as Boundary
Condition along {x = z(τ)}.

L. Frolov (Rutgers) Point singularities in classical field theory August 5th, 2025 16 / 19



Outlook

These results indicate that point charges interacting with fields of
sufficient regularity admit well-posed joint evolutions.

In higher dimensions we need to study non-linear wave equations
coupled to point sources.

Non-linear modifications may regularize the sourced fields to permit a
well-posed joint evolution

∂µ

(
∂µU√

1 + ∂αU∂αU

)
= a

∫
δ(n+1)(x − z(τ))dτ. (26)

As a first step: Quasi-Linear Schrödinger with Point Singularity for all
d ∈ N

i∂tψ = ∇⃗ ·

 ∇⃗ψ√
1− |∇⃗ψ|2

+ ikδ(n)(x⃗)ψ. (27)
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