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What is a Classical Point Charge?

On n + 1 dimensional space-time R1,n ∼= R× Rn with metric
η = diag(1,−1,−1...) and coordinates x = (x0, x1, x2, ...).

A point charge is represented by a future directed time-like curve
(“world-line”) z(θ) : R → R1,n, dz0

dθ > |dz⃗dθ |.
We will use the proper time parameterization z(τ) defined by
dτ =

√
ηµν żµżνdθ.

Associated to the particle is a mass m > 0, scalar charge a ∈ R,
velocity uµ := dzµ

dτ , and momentum pµ.

Notation: Jump and Average:

f (z) = lim
ϵ→0

f (z + ϵ) + f (z − ϵ)

2
, [f ]x=z = lim

ϵ→0+
(f (z + ϵ)− f (z − ϵ))

(1)
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ηµν żµżνdθ.

Associated to the particle is a mass m > 0, scalar charge a ∈ R,
velocity uµ := dzµ

dτ , and momentum pµ.

Notation: Jump and Average:

f (z) = lim
ϵ→0

f (z + ϵ) + f (z − ϵ)

2
, [f ]x=z = lim

ϵ→0+
(f (z + ϵ)− f (z − ϵ))

(1)

L. Frolov, S. Leigh, & A. S. Tahvildar-Zadeh (Rutgers)Joint evolution of a Lorentz-covariant scalar field and its point charge in one space dimensionSeptember 16, 2024 2 / 18



What is a Classical Point Charge?

On n + 1 dimensional space-time R1,n ∼= R× Rn with metric
η = diag(1,−1,−1...) and coordinates x = (x0, x1, x2, ...).

A point charge is represented by a future directed time-like curve
(“world-line”) z(θ) : R → R1,n, dz0

dθ > |dz⃗dθ |.
We will use the proper time parameterization z(τ) defined by
dτ =

√
ηµν żµżνdθ.
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Scalar Point Charge

The scalar point charge acts as a source for the scalar field via

□U := ∂2
0U −∆U = a

∫
δ(n+1)(x − z(τ))dτ (2)
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Motion of Scalar Field Animation

Given initial data (V0,V1) and a charge trajectory z(τ), the solution for U
is well-known. 

□U = a
∫
δ(n+1)(x − z(τ))dτ

U
∣∣
x0=0

= V0

∂0U
∣∣
x0=0

= V1

(3)

Figure: Animation of scalar field sourced by a moving point charge in one space
dimension.
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(In)admissible Force Laws

We demand a joint evolution which preserves the total
energy-momentum of the field-particle system.

δS [U, z ]

δz
= 0 ⇒ dpµ

dτ
= −a∂µU(z) (4)

∂µU cannot be evaluated along z(τ), joint evolution equations are
inconsistent.
Kiessling[1] proposed in 2019 that the force law should be derived
directly from energy-momentum conservation

∂µ
(
Tµν
p + Tµν

U

)
= 0 (5)

Tµν
U := (∂µU)(∂νU)− 1

2
ηµν(∂µU)(∂µU). (6)

Tµν
p :=

∫
uµpνδ(n+1)(x − z(τ))dτ (7)
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Modified Field Equations

In dimensions n > 1, we expect the scalar field equation to be
inconsistent even with energy-momentum conservation [1,4].

Modify “vacuum law” to regularize sourced fields:

(1 +
1

κ2
□)□U = J[z ] K-T.Z[2],Hoang et al.[3] (8)

∂µ

 ∂µU√
1 + 1

b2
∂αU∂αU

 = J[z ]. (9)

In one space dimension, no modification is necessary!
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Conservation of Stress Energy-Momentum

Theorem

Suppose U satisfies (3) on R1,1 with sufficiently regular initial data and
z(τ) is an arbitrary time-like world-line.

Then assuming conservation of
energy-momentum

∂µT
µν
p = −∂µT

µν
U , ν ∈ {0, 1} (10)

returns the unique force law

dpν

dτ
= −

[
nµT

µν
U (z0, x1)

]
x1=z1

. (11)

For initial data smooth away from z(0), this force can be explicitly
computed as

dpν

dτ
= −a∂νU. (12)
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Derivation of Force Law 1

∫
Ω
∂µT

µνdV =

∫
∂Ω

TµνNµdS (13)

Figure: Region of integration Ω and its normals
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Derivation of Force Law 1

∫
∂Ω

Tµν
p NµdS = pν(τ2)− pν(τ1) =

∫ τ2

τ1

dpν

dτ
dτ. (13)
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Derivation of Force Law 2

Lemma

Suppose U satisfies equation (3) with (U, ∂0U)
∣∣
x0=0

∈ C 0,1(R)× L∞(R)
and singular source concentrated on a time-like world-line z(τ). Then U is
of regularity C 0,1(R1,1), and ∂µU,Tµν

U ∈ L∞(R1,1).
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Derivation of Force Law 2

lim
ϵ→0

∫
∂Ω

Tµν
U NµdS =

∫ τ2

τ1

[
Tµν
U nµ(z

0, x1)
]
x1=z1(τ)

dτ (14)
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Analyzing Force Law 1

So weak conservation of energy-momentum returns

∫ τ2

τ1

dpν

dτ
dτ = −

∫ τ2

τ1

[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

dτ. (15)

as desired.

nµT
µν depends on both ∂0U, ∂1U, which seems undesireable since

we’d like dpν

dτ ∝ −a∂νU.

If we assume (U, ∂0U)
∣∣
x0=0

is smooth away from z1(0). We then
have the jump formula

[∂µU]x1=z1(τ) = −anµ (16)
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Analyzing Force Law 2

The jump in the gradient is orthogonal to uµ!

uµ [∂µU]x1=z1(τ) = uµ(−anµ) = 0. (17)

One can use this to compute

dp0

dτ
=

−1

2u1
[
(∂0U)2

]
x1=z1

, (18)

dp1

dτ
=

1

2u0
[
(∂1U)2

]
x1=z1

. (19)

The final force law dpν

dτ = −a∂νU follows from[
f 2(x1)

2

]
x1=z1

= [f ]x1=z1 f (20)
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Force Law Consequences 1

Corollary

The force contribution of external scalar fields follows the standard law
derived from the principle of least action.

F ν
ext = −a∂νUext. (21)

However, the singular “self-force” can now be determined, and the
expression for it guarantees the conservation of the system’s total
energy-momentum.

F ν
self = −a∂νUsource =

−a2uν

2
(22)
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Force Law Consequences 2

Theorem

For any set of particle parameters with positive bare mass and non-zero
real scalar charge, and for any “admissible” initial data, the joint initial
value problem given by

ηµν∂µ∂νU(x) = a
∫
δ(2)(x − z(τ))dτ

U(0, x1) = V0(x
1)

∂0U(0, x1) = V1(x
1),

(23)

{
dzµ

dτ = uµ

dpµ

dτ = −
[
nµT

µν
U (z0, x1)

]
x1=z1(τ)

.
(24)

admits a unique, global-in-time solution.
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Summary

We studied the joint evolution equations for a scalar field and its
point charge source in 1 space dimension

□U = a

∫
δ(2)(x − z(τ)dτ. (25)

We rigorously derived an equation of motion for the point charge
from weak energy-momentum conservation

The force law closely resembles the one derived from PoLA, and
returns a simple expression for the self-force.

This force law allowed us to prove well-posedness of the joint
evolution problem for the field-particle singularity system.
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Outlook

These results indicate that point charges interacting with fields of
sufficient regularity admit well-posed joint evolutions.

In 1 space dimension, a non-linear theory of distributions will be
necessary to study the gravitational joint evolution problem.

In higher dimensions we need to study non-linear wave equations
coupled to point sources.
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Outlook

These results indicate that point charges interacting with fields of
sufficient regularity admit well-posed joint evolutions.

In 1 space dimension, a non-linear theory of distributions will be
necessary to study the gravitational joint evolution problem.

Point mass acts as singularity in curvature

gµν ∈ C 0,1(M),
[
Γκµν(z

0, x1)
]
x1=z1

̸= 0 (25)

∇µT
µν
p ∝ ∂µT

µν
p + ΓTp = 0? (26)

In higher dimensions we need to study non-linear wave equations
coupled to point sources.
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Outlook

These results indicate that point charges interacting with fields of
sufficient regularity admit well-posed joint evolutions.

In 1 space dimension, a non-linear theory of distributions will be
necessary to study the gravitational joint evolution problem.

In higher dimensions we need to study non-linear wave equations
coupled to point sources.

Non-linear modifications may regularize the sourced fields to permit a
well-posed joint evolution

∂µ

(
∂µU√

1 + ∂αU∂αU

)
= a

∫
δ(n+1)(x − z(τ))dτ. (25)
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White Lies

True force law from Energy-Momentum conservation:∫ τ2

τ1

dpν

dτ
dτ = lim

ϵ→0+

(∫ τ2

τ1

nµT
µν
U (z0, z1 + ϵ)− nµT

µν
U (z0, z1 − ϵ)dτ

)
(26)

The momentum of a scalar point charge is
pµ := (m − aU(z))uµ ̸= muµ

Action Principle:

S [U, z ] =

∫
(LU + Li + Lp)

√
−ηdx2 (27)

LU :=
1

2
ηµν∂µU∂νU, Li :=

−a

m
U(z)Lp (28)

Lp := − m√
−η

∫ √
ηµν żµżνδ

(2)(x − z(θ))dθ (29)
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