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A simple question

A non-relativistic quantum particle is prepared with state ψ0 at t = 0
inside some bounded region Ω, and detectors are placed along the
boundary ∂Ω.

The quantum particle evolves in Ω until it is detected along ∂Ω, we
record the time and position of detection.

As the experiment is repeated: what is the distribution of times that
the particle is detected along ∂Ω?
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Soft Detectors

There is no self-adjoint time operator t̂ conjugate to Ĥ = − ∆
2m .

Soft detectors:

iℏ∂tψ =

(
− ∆

2m
− iv1Ωc

)
ψ in R3 (1)

We interpret ||ψt ||2L2(R3) as probability the particle remains undetected

in R3 at time t.

v > 0 leads to gradual loss of probability in Ωc

∂t(|ψ|2) = −∇ · J⃗ψ − 2v

ℏ
|ψ|21Ωc (2)

Allcock: For hard detector, take v → ∞. However, this returns
unitary dynamics for ψ, with ||ψt ||2L2(Ω) = 1 for all time. The particle
is never detected along ∂Ω!

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 3 / 21



Soft Detectors

There is no self-adjoint time operator t̂ conjugate to Ĥ = − ∆
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Derivation 1

Regard the particle+detector as a quantum system with wave
function Ψt in a Hilbert space of the form HP ⊕HF

HF denotes the space of states where detector has “Fired”

HP = L2(Ω)⊗HD consists of states where particle resides in Ω and
detector is “Primed”

System initially prepared in pure-product state

Ψ0 = ψ0 ⊗ ϕ0 ∈ L2(Ω)⊕HD = HP

Ψt satisfies a norm-preserving Schrödinger evolution of the form

i∂tΨ = ĤSΨ

.
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.

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 4 / 21



Derivation 1

Regard the particle+detector as a quantum system with wave
function Ψt in a Hilbert space of the form HP ⊕HF

HF denotes the space of states where detector has “Fired”

HP = L2(Ω)⊗HD consists of states where particle resides in Ω and
detector is “Primed”

System initially prepared in pure-product state

Ψ0 = ψ0 ⊗ ϕ0 ∈ L2(Ω)⊕HD = HP

Ψt satisfies a norm-preserving Schrödinger evolution of the form

i∂tΨ = ĤSΨ
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Derivation 2: Hard Detectors

Assumption (Idealized Hard Detector)

Hard Detection: No interaction between the particle and detector while
the particle remains undetected in the interior of Ω

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 5 / 21



Derivation 2: Hard Detectors

Assumption (Idealized Hard Detector)

Hard Detection: No interaction between the particle and detector while
the particle remains undetected in the interior of Ω

Condition (C0)

The projected particle-detector wave function remains a pure-product state
Ψt

∣∣
HP

= ψt ⊗ ϕt . The dynamics of the quantum particle in Ω before
detection is given by the wave function ψt .
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Derivation 2: Hard Detectors

Assumption (Idealized Hard Detector)

Hard Detection: No interaction between the particle and detector while
the particle remains undetected in the interior of Ω

Remark

The wave function of the particle-detector system after detection, i.e
Ψt

∣∣
HF

is allowed to be (and will most certainly be) entangled.
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Derivation 2: Hard Detectors

Assumption (Idealized Hard Detector)

Hard Detection: No interaction between the particle and detector while
the particle remains undetected in the interior of Ω

Condition (C1)

ψt weakly satisfies a Schrödinger equation inside Ω.

i
∂ψ

∂t
= Ĥ∗ψ in Ω (3)

Where Ĥ = −∆+ V is defined on D(Ĥ) = C∞
c (Ω) with V ∈ L∞(Ω) a

real valued potential depending on the experimental apparatus.
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Derivation 2: Detection Mechanism

Detection: An interaction which quickly transports probability from
HP to HF .

Assumption (Irreversibility)

Detection is taken to be an irreversible process:

Parts of Ψ in HF cannot propagate back and interfere with parts that
have not yet left HP .

The dynamics of Ψt

∣∣
HP

= ψt ⊗ ϕt are norm-non-increasing and

autonomous, they are not affected by the dynamics of Ψt

∣∣
HF

.
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Evolution Maps

Assumption (Time Independent Detection Mechanism)

The mechanism of detection is independent of time

Condition (C2)

For fixed ϕ0, the evolution maps Wt : ψ0 7→ ψt , defined for t ≥ 0 forms a
strongly continuous semigroup on L2(Ω):

1 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.

2 The maps Wt are linear.

3 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.
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Evolution Maps

Condition (C2)

For fixed ϕ0, the evolution maps Wt : ψ0 7→ ψt , defined for t ≥ 0 forms a
strongly continuous semigroup on L2(Ω):

1 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.

2 The maps Wt are linear.

3 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.

Remark

We hope that Wt does not depend on the fine details of the quantum
state ϕ0, as it is not experimentally feasible to fine-tune the initial state of
a macroscopic object!
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Evolution Maps

Condition (C2)

For fixed ϕ0, the evolution maps Wt : ψ0 7→ ψt , defined for t ≥ 0 forms a
strongly continuous semigroup on L2(Ω):

1 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.

2 The maps Wt are linear.

3 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.

Condition (C3)

Wt are contractions, i.e ||Wtψ||L2(Ω) ≤ ||ψ||L2(Ω) for all ψ ∈ L2(Ω).
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Absorbing Boundary Conditions

R. Tumulka proposed that hard detection should be modeled by a
time-independent local absorbing boundary condition.

He argues that ψt should be governed by an IBVP
i∂tψ = (−∆+ V )ψ in Ω
ψ = ψ0 at t = 0

∂nψ = iβψ on ∂Ω
(4)
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where ∂n denotes the outwards normal derivative of Ω, and β is a
function on ∂Ω satisfying Re(β) ≥ 0.
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where ∂n denotes the outwards normal derivative of Ω, and β is a
function on ∂Ω satisfying Re(β) ≥ 0.

Proposal (Tumulka’s Absorbing Boundary Rule)

For ψt satisfying (4) with ||ψ0||L2(Ω) = 1, the probability of detecting the
quantum particle in Σ ⊂ ∂Ω between times t1 and t2 is

Probψ0(t1 ≤ t ≤ t2, x ∈ Σ) =

∫ t2

t1

∫
Σ
n⃗ · j⃗ψt dx

n−1dt (5)
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Absorbing Boundary Conditions

He argues that ψt should be governed by an IBVP
i∂tψ = (−∆+ V )ψ in Ω
ψ = ψ0 at t = 0

∂nψ = iβψ on ∂Ω
(4)

Theorem (L.F, S.Teufel, R. Tumulka)

Let Ω ⊂ Rn be a bounded C 2 domain of dimension n > 1 and
β ∈ C 1(∂Ω) with Re(β) ≥ 0 a.e. Then for ψ0 ∈ H2(Ω) initially satisfying
the boundary condition ∂nψ0 = iβψ0 on ∂Ω, there exists a unique
global-in-time solution to (4).
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Let Ω ⊂ Rn be a bounded C 2 domain of dimension n > 1 and
β ∈ C 1(∂Ω) with Re(β) ≥ 0 a.e. Then for ψ0 ∈ H2(Ω) initially satisfying
the boundary condition ∂nψ0 = iβψ0 on ∂Ω, there exists a unique
global-in-time solution to (4).
In addition, the solution maps Wt : ψ0 7→ ψt extend to a C0 contraction
semigroup on L2(Ω).
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Is there a converse?

If Wt is a strongly continuous contraction semigroup which “weakly”
solves the Schrödinger equation, must Wt come from an IBVP?

Theorem (Lumer-Phillips)

Suppose Wt is a strongly continuous contraction semigroup on a Hilbert
space H. Then there exists a linear operator L such that

D(L) := {ψ ∈ H : limt→0+
Wtψ−ψ

t exists in H} is dense in H.

Wt = exp(−itL) i.e. i d
dt (Wtψ) = LWtψ for all ψ ∈ D(L), t ≥ 0.

Wt : D(L) → D(L).

−iL is maximally dissipative; i.e Re⟨−iLψ,ψ⟩H ≤ 0 for all ψ ∈ D(L);

and −iL has no dissipative extensions.
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Theorem (Lumer-Phillips)

Suppose Wt is a strongly continuous contraction semigroup on a Hilbert
space H. Then there exists a linear operator L such that

D(L) := {ψ ∈ H : limt→0+
Wtψ−ψ

t exists in H} is dense in H.

Wt = exp(−itL) i.e. i d
dt (Wtψ) = LWtψ for all ψ ∈ D(L), t ≥ 0.

Wt : D(L) → D(L).

−iL is maximally dissipative; i.e Re⟨−iLψ,ψ⟩H ≤ 0 for all ψ ∈ D(L);

and −iL has no dissipative extensions.

The converse is also true, if −iL is densely defined and maximally
dissipative on H then it generates a C0 contraction semigroup.
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Intuition

Dissipativity: d
dt || exp(−itL)ψ||2H

∣∣
t=0

= 2Re⟨−iLψ,ψ⟩ ≤ 0.

Wt “weakly solving Schrödinger equation”: Wt = exp(−itL) with
L ⊂ Ĥ∗, where Ĥ = (−∆+ V )

∣∣
C∞
c (Ω)

.

If −iL = −i Ĥ∗∣∣{ψ ∈ D(Ĥ∗) : ψ satisfies some B.C} is maximally
dissipative, then Lumer-Phillips says that for ψ0 ∈ D(L) i∂tψ = Ĥ∗ψ in Ω

ψ = ψ0 at t = 0
B.C on ∂Ω

(5)

has a unique global-in-time solution ψt = exp(−itL)ψ0 ∈ D(L), and
the solution mappings extend continuously to L2(Ω).
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Parameterization of ABC in 1-D

Theorem ((Informal))

Let Ω = (−∞, 0], V ∈ L∞(Ω,R), and Ĥ = (−∂2x + V )
∣∣
C∞
c (Ω)

.
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a strongly continuous contraction semigroup on L2(Ω) which “weakly”
satisfies the Schrödinger equation if and only if it is the solution mapping
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∣∣
C∞
c (Ω)

. Then Wt is

a strongly continuous contraction semigroup on L2(Ω) which “weakly”
satisfies the Schrödinger equation if and only if it is the solution mapping
for an IBVP of the form

i∂tψ = (−i∂2x + V )ψ in Ω
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ψ(0) + i∂xψ(0) = Φ(ψ(0)− i∂xψ(0)) at x = 0
(6)

where Φ ∈ C satisfies |Φ| ≤ 1.
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Parameterization of ABC in 1-D

Theorem (Formal)
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L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 12 / 21



Parameterization of ABC in 1-D

Theorem (Formal)

Let Ω = (−∞, 0], V ∈ L∞(Ω,R), and Ĥ = (−∂2x + V )
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D(LΦ) = {ψ ∈ H2(Ω) : ψ(0) + i∂xψ(0) = Φ(ψ(0)− i∂xψ(0))} (7)

where Φ ∈ C satisfies |Φ| ≤ 1.LΦ is self-adjoint if and only if |Φ| = 1,
otherwise exp(−itL) is norm-decreasing.

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 12 / 21



Parameterization of ABC in 1-D

Theorem (Formal)

Let Ω = (−∞, 0], V ∈ L∞(Ω,R), and Ĥ = (−∂2x + V )
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Quick Examples

(1 + Φ)∂xψ(0) = i(1− Φ)ψ(0)

Dirichlet B.C: Φ = −1 implies D(L−1) = {ψ ∈ H2(Ω) : ψ(0) = 0}

Neumann B.C: Φ = 1 implies D(L1) = {ψ ∈ H2(Ω) : ∂xψ(0) = 0}
|Φ| < 1 implies D(LΦ) = {ψ ∈ H2(Ω) : ∂xψ(0) = i 1−Φ

1+Φψ(0)}
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Sketch of Proof

Maximal domain of Schrödinger Hamiltonian in 1−D is
D(H∗) = H2((−∞, 0]).

By Sobolev embedding theorems, ψ and ∂xψ admit continuous
representatives on (−∞, 0].

We introduce G± : D(Ĥ∗) → C, G±ψ := ψ(0)± i∂xψ(0) so that

2Re⟨−i Ĥ∗ψ,ψ⟩L2((−∞]) = Jψ(0) = ||G+ψ||2C − ||G−ψ||2C (8)

Taking −iL ⊂ −i Ĥ∗ maximally dissipative implies

||G+ψ||2C − ||G−ψ||2C = 2Re⟨−iLψ,ψ⟩ ≤ 0, ∀ψ ∈ D(L) (9)

Hence |G+ψ| ≤ |G−ψ| for all ψ ∈ D(L), in particular G−ψ uniquely
determines G+ψ.
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Taking −iL ⊂ −i Ĥ∗ maximally dissipative implies

||G+ψ||2C − ||G−ψ||2C = 2Re⟨−iLψ,ψ⟩ ≤ 0, ∀ψ ∈ D(L) (9)

Hence |G+ψ| ≤ |G−ψ| for all ψ ∈ D(L), in particular G−ψ uniquely
determines G+ψ.

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 14 / 21



Sketch of Proof

Maximal domain of Schrödinger Hamiltonian in 1−D is
D(H∗) = H2((−∞, 0]).

By Sobolev embedding theorems, ψ and ∂xψ admit continuous
representatives on (−∞, 0].

We introduce G± : D(Ĥ∗) → C, G±ψ := ψ(0)± i∂xψ(0) so that
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Taking −iL ⊂ −i Ĥ∗ maximally dissipative implies

||G+ψ||2C − ||G−ψ||2C = 2Re⟨−iLψ,ψ⟩ ≤ 0, ∀ψ ∈ D(L) (9)

Hence |G+ψ| ≤ |G−ψ| for all ψ ∈ D(L), in particular G−ψ uniquely
determines G+ψ.

L. Frolov (Rutgers) Schrödinger operators that model hard detection August 15, 2025 14 / 21



Sketch of Proof

Maximal domain of Schrödinger Hamiltonian in 1−D is
D(H∗) = H2((−∞, 0]).

By Sobolev embedding theorems, ψ and ∂xψ admit continuous
representatives on (−∞, 0].
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Main Results 1

Theorem (Absorbing Boundary Condition Derivation)

Let Ω ⊂ Rn be a bounded C 2 domain, and let Wt be a C0 contraction
semigroup on L2(Ω) weakly solving i∂tψ = Ĥ∗ψ.

d

dt
||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (10)
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G± : D(Ĥ∗) → L2(∂Ω) defined linearly in (ψ, ∂nψ)

∣∣
∂Ω

decomposes the
probability leaving Ω into a difference between the squares of two norms

d

dt
||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (10)

Associated to the evolution operator Wt there exists a unique linear
contraction Φ : L2(∂Ω) → L2(∂Ω) such that for all ψ0 ∈ L2(Ω), Wtψ0

uniquely solves the initial-boundary value problem i∂tψ = Ĥψ in Ω
ψ = ψ0 at t = 0

G+ψ = ΦG−ψ on ∂Ω

(11)
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Main Results 2

Remark

Most linear contractions Φ result in boundary conditions with highly
non-local dynamics. This is not surprising, given that conditions (C1),
(C2), and (C3) do not rule out cases where probability is instantly
transported from one part of the boundary to another.
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Main Results 2

Theorem (Robin Boundary Condition)

Let Ω ⊂ Rn be a bounded C 2 domain, and let β ∈ L∞(∂Ω) satisfy
Re(β) ≥ 0 a.e on ∂Ω. Then the initial-boundary value problem i∂tψ = Ĥψ in Ω

ψ = ψ0 at t = 0
∂nψ = iβψ on ∂Ω

(12)

admits a unique, global-in-time solution for each ψ0 ∈ L2(Ω).
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ψ = ψ0 at t = 0
∂nψ = iβψ on ∂Ω

(12)

admits a unique, global-in-time solution for each ψ0 ∈ L2(Ω).

We can prove this by explicitly constructing a contraction Φβ such that

G+ψ = ΦBG−ψ ⇐⇒ ∂nψ
∣∣
∂Ω

= iβψ
∣∣
∂Ω

(13)
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Main Results 3

(Energy-Time Uncertainty) For ψ ∈ C∞
c (Ω) and Φ linear contraction

on L2(∂Ω), set p = 1− limt→∞ || exp(−itĤΦ)ψ||. Then

σĤΦ,ψ
σT ,ψ ≥ p

2
. (14)

(Finite time detection): If Ω is C 2 and bounded, β ∈ L∞ with
Re(β) > 0 a.e on ∂Ω then p = 1− limt→∞ || exp(−itĤβψ)|| = 0.

(Continuity in β): If βϵ is a sequence converging to β the detection
time distributions converge

2Re(βϵ)
∣∣∣exp(−itĤβϵ)ψ0

∣∣∣2 ∣∣∣∣
∂Ω

ϵ→0−−→ 2Re(β)
∣∣∣exp(−itĤβ)ψ0

∣∣∣2 ∣∣∣∣
∂Ω
(15)

with respect to L1Loc([0,∞)× ∂Ω) norm.
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Summary

We showed that for quantum particles undergoing irreversible hard
detection, the wave function of the particle before detection is
governed by a C0 contraction semigroup Wt .

We applied the theory of boundary tuples to prove that Wt

corresponds to some absorbing boundary condition
G+(ψ

∣∣
∂Ω
, ∂nψ

∣∣
∂Ω

) = ΦG−(ψ
∣∣
∂Ω
, ∂nψ

∣∣
∂Ω

).

Any such Wt gives rise to a well-defined distribution of detection
times along ∂Ω.

We showed that these distributions are stable under small
perturbations.
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Outlook

For the N−particle case ψt ∈ L2(ΩN), hence we would like to
generalize this result to bounded Lipschitz regions.

Relativistic setting: Parameterize all maximally dissipative restrictions
of Ĥ∗

Dirac

Which ABC’s for the non-relativistic Schrödinger equation are
derivable as a non-relativistic limit of the Dirac equation with some
ABC?
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