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A simple question

A non-relativistic quantum particle is prepared with state ψ0 at t = 0
inside some bounded region Ω, and detectors are placed along the
boundary ∂Ω.

The quantum particle freely evolves in Ω until it is detected along ∂Ω,
we record the time and position of detection.

As the experiment is repeated: what is the distribution of times that
the particle is detected along ∂Ω?
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Quantum Mechanics

Quantum system of N non-relativistic particles: the wave function
ψt ∈ L2(R3N) evolves according to the Schrödinger E.Q.

iℏ∂tψ =

 N∑
j=1

−ℏ2

2mj
∆j + V (x)

ψ = Ĥψ (1)

The Schrödinger equation tells us how these probabilities are
changing in time.

d

dt
Prob ((x1, x2, . . . , xN) ∈ D) [ψ0] = −

∫
∂D

j⃗ψt · n⃗ dS (2)

where n⃗ denotes the unit normal vector to ∂Ω, dS the surface
element along ∂D, and j⃗ψ := ℏ

mℑ(ψ∗∇⃗ψ)
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An incomplete history of time 1

There are many claims that quantum mechanics cannot make
predictions about time (and consequently detection time).

Pauli: There is no self-adjoint time operator t̂ conjugate to Ĥ which
is bounded from below, any such s.a t̂ would have [−∞,∞] ∈ σ(t̂).

Allcock: Quantum mechanics cannot allow an apparatus
independent probability distribution for arrival time on ∂Ω.

But we have data!
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Double Slit Experiment

Figure: Kurtsiefer, Pfau, and Mlynek.
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An incomplete history of time 2

Kijowski: Derived a unique arrival time distribution of detection on
∂Ω from axioms inspired by classical mechanics. Needs V = 0!

Mainstream opinion: rate of detection times should correspond to flux
of probability through ∂Ω.

ProbFlux(td ∈ [t1, t2])[ψ0] =

∫ t2

t1

∫
∂Ω

j⃗ψt · n⃗ dS dt (3)

Problem is that j⃗ψt · n⃗ is not always positive if ψt freely satisfies

iℏ∂tψ = Ĥψ on R3.

Bohmian Mechanics: The particle has a trajectory guided by the wave

function via dQ⃗(t)
dt =

j⃗ψt
ρψt

(Q⃗(t)). Solve for trajectory Q⃗(t) and find

the time of arrival at ∂Ω.

For most ψ0 we get

ProbB.M(td ∈ [t1, t2])[ψ0] ≈
∫ t2

t1

∫
∂Ω

j⃗ψt · n⃗ dS dt (4)
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Moral of today

Main moral of today: theoretical time of arrival in absence of
detectors may be different than measured time of detector.

Placing detectors along ∂Ω may generate a back-effect on dynamics
of ψt .

With some idealized assumptions on the mechanism of detection we
can characterize this back-effect and derive a simple Born rule for
detection time probabilities

ProbTW (td ∈ [t1, t2])[ψ0] =

∫ t2

t1

∫
∂Ω

⃗jψt · n⃗ dS dt (5)

The theory of boundary tuples is necessary for this derivation!
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Derivation 1

Regard the particle and detector as a quantum system of N + 1
particles with config space R3

p × R3N
D .

Wave function Ψt of particle-detector system is initially in
pure-product state Ψ0(xp, xD) = ψ0(xp)⊗ ϕ0(xD) and satisfies a
norm-preserving Schrödinger evolution i∂tΨt = ĤSΨ.

Let N ⊂ R3N
D denote set of detector configurations in which detectors

have not yet clicked but are ready, and F ⊂ R3N
D denote

configurations in which a detector has fired.

We take the support of ψ0 to be contained in Ω, and the support of
ϕ0 to be contained in N .
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Derivation 2: Hard Detectors

Assumption (Hard Detector)

Hard Detection: No interaction between particle and detector in interior of
Ω×N . Stated rigorously

ĤS

∣∣
Ω×N = Ĥ ⊗ 1+ 1⊗ ĤD where 1 is identity, ĤD hamiltonian of

detector, and Ĥ is non-relativistic Schrödinger Hamiltonian.

Ψt

∣∣
Ω×N cannot become entangled through evolution.
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detector, and Ĥ is non-relativistic Schrödinger Hamiltonian.

Ψt
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Remark

The wave function of the particle-detector system after detection, i.e
Ψt

∣∣
R3
p×F is allowed to be (and will most certainly be) entangled.
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Ω×N = Ĥ ⊗ 1+ 1⊗ ĤD where 1 is identity, ĤD hamiltonian of

detector, and Ĥ is non-relativistic Schrödinger Hamiltonian.

Ψt

∣∣
Ω×N cannot become entangled through evolution.

Condition (C0)

The particle-detector system remains a pure-product state inside Ω×N ,
i.e Ψt

∣∣
Ω×N = ψt ⊗ ϕt . The dynamics of the quantum particle in Ω before

detection is given by the wave function ψt .
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Ω×N = Ĥ ⊗ 1+ 1⊗ ĤD where 1 is identity, ĤD hamiltonian of

detector, and Ĥ is non-relativistic Schrödinger Hamiltonian.

Ψt

∣∣
Ω×N cannot become entangled through evolution.

Condition (C1)

ψt weakly satisfies a Schrödinger equation inside Ω.

i
∂ψ

∂t
= Ĥ∗ψ in Ω (6)

Where Ĥ = −∆+ V is defined on D(Ĥ) = H2
0 (Ω) with V ∈ L∞(Ω) a real

valued potential depending on the experimental apparatus.
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Derivation 2: Detection Mechanism

Detection: An interaction which quickly transports probability from
Ω×N to R3

p ×F .

Assumption (Irreversibility)

Detection is taken to be an irreversible process:

Parts of Ψ in R3
p ×F cannot propagate back to Ω×N and interfere

with parts that have not yet left Ω×N .

The dynamics of Ψt in Ω×N are norm-non-increasing and
autonomous, they are not affected by the dynamics of Ψt in R3

p ×F .

It follows from autonomy that for any fixed initial detector state ϕ0,
the evolution mapping Wt : ψ0 7→ ψt where ψt uniquely satisfies{

i∂t(ψt ⊗ ϕt) = ĤS(ψt ⊗ ϕt) in Ω×N
(ψt ⊗ ϕt)

∣∣
t=0

= ψ0 ⊗ ϕ0
(7)

is well defined.
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Evolution Maps

Condition (C2)

The evolution maps Wt : L
2(Ω) → L2(Ω), ψt := Wtψ0, defined for t ≥ 0

form a C0 semigroup:

1 The maps Wt are linear.

2 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.

3 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.
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Evolution Maps

Condition (C2)

The evolution maps Wt : L
2(Ω) → L2(Ω), ψt := Wtψ0, defined for t ≥ 0

form a C0 semigroup:

1 The maps Wt are linear.

2 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.

3 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.

Remark

We hope that Wt does not depend on the fine details of the quantum
state ϕ0, as it is not experimentally feasible to fine-tune the initial state of
a macroscopic object!
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form a C0 semigroup:

1 The maps Wt are linear.

2 They are strongly continuous, limt→t0 ||Wtψ −Wt0ψ||L2(Ω) = 0 for all

ψ ∈ L2(Ω), t0 ≥ 0.

3 They form a semigroup under composition, i.e WtWs = Wt+s for
t, s ≥ 0, with W0 = 1.

Condition (C3)

Wt are contractions, i.e ||Wtψ||L2(Ω) ≤ ||ψ||L2(Ω) for all ψ ∈ L2(Ω).
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Absorbing Boundary Conditions

Roderich(Rodi) Tumulka argued that hard detection should be
modeled by a time-independent local absorbing boundary condition.

He argues that ψt should be governed by an IBVP
i∂tψ = (−∆+ V )ψ in Ω
ψ = ψ0 at t = 0

∂nψ = iBψ on ∂Ω
(8)

where ∂n denotes the outwards normal derivative of Ω, and B is a
function on ∂Ω satisfying Re(B) ≥ 0.
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i∂tψ = (−∆+ V )ψ in Ω
ψ = ψ0 at t = 0

∂nψ = iBψ on ∂Ω
(8)

where ∂n denotes the outwards normal derivative of Ω, and B is a
function on ∂Ω satisfying Re(B) ≥ 0.

Proposal (Tumulka’s Absorbing Boundary Rule)

For ψt satisfying (8) with ||ψ0||L2(Ω) = 1, the probability of detecting the
quantum particle in B ⊂ ∂Ω between times t1 and t2 is

Probψ0(t1 ≤ t ≤ t2, x ∈ Σ) =

∫ t2

t1

∫
Σ
n⃗ · j⃗ψt dx

n−1dt (9)
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Proposal (Tumulka’s Absorbing Boundary Rule)

For ψt satisfying (8) with ||ψ0||L2(Ω) = 1, the probability of detecting the
quantum particle in Σ ⊂ ∂Ω between times t1 and t2 is

Probψ0(t1 ≤ t ≤ t2, x ∈ Σ) =

∫ t2

t1

∫
Σ
2Re(B)|ψ|2 dxn−1dt (9)
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Main Results 1

Theorem (Absorbing Boundary Condition Derivation)

Let Ω ⊂ Rn be a bounded C 2 domain, and let Wt be a C0 contraction
semigroup on L2(Ω) weakly solving i∂tψ = Ĥ∗ψ.

d

dt
||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (10)

.
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semigroup on L2(Ω) weakly solving i∂tψ = Ĥ∗ψ. First, the maps
G± : D(Ĥ∗) → L2(∂Ω) defined linearly in (ψ, ∂nψ)

∣∣
∂Ω

G±ψ :=
1√
2

(
ι−ψ

∣∣
∂Ω

± iι+∂nψD

∣∣
∂Ω

)
(10)

d
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decomposes the probability leaving Ω into a difference between the squares
of two norms

d
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||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (11)
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Let Ω ⊂ Rn be a bounded C 2 domain, and let Wt be a C0 contraction
semigroup on L2(Ω) weakly solving i∂tψ = Ĥ∗ψ. First, the maps
G± : D(Ĥ∗) → L2(∂Ω) defined linearly in (ψ, ∂nψ)

∣∣
∂Ω

decomposes the
probability leaving Ω into a difference between the squares of two norms

d

dt
||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (10)

Associated to the evolution operator Wt there exists a unique linear
contraction Φ : L2(∂Ω) → L2(∂Ω) such that for all ψ0 ∈ L2(Ω), Wtψ0

uniquely solves the initial-boundary value problem i∂tψ = Ĥψ in Ω
ψ = ψ0 at t = 0

G+ψ = ΦG−ψ on ∂Ω

(11)

.
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Main Results 1

Theorem (Absorbing Boundary Condition Derivation)

Let Ω ⊂ Rn be a bounded C 2 domain, and let Wt be a C0 contraction
semigroup on L2(Ω) weakly solving i∂tψ = Ĥ∗ψ.

d

dt
||Wtψ||2L2(Ω) = ||G+ψ||2L2(∂Ω) − ||G−ψ||2L2(∂Ω). (10)

Stated rigorously, there exists a unique linear contraction Φ such that

Wt = e−itĤΦ , where ĤΦ is the closed extension of Ĥ defined by

D(ĤΦ) := {ψ ∈ D(Ĥ∗) : G+ψ = ΦG−ψ}, ĤΦ := Ĥ∗∣∣
D(ĤΦ)

. (11)

The converse is also true, any linear contraction Φ : L2(∂Ω) → L2(∂Ω)

gives rise to a unique C0 contraction semigroup e−itĤΦ .
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Main Results 2

Remark

Most linear contractions Φ result in boundary conditions with highly
non-local dynamics. This is not surprising, given that conditions (C1),
(C2), and (C3) do not rule out cases where probability is instantly
transported from one part of the boundary to another.
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Main Results 2

Theorem (Robin Boundary Condition)

Let Ω ⊂ Rn be a bounded C 2 domain, and let B : H1/2(∂Ω) → H−1/2(∂Ω)
be a compact operator such that Re⟨Bχ, χ⟩H−1/2(∂Ω)×H1/2(∂Ω) ≥ 0 for all

χ ∈ H1/2(∂Ω). Then the initial-boundary value problem i∂tψ = Ĥψ in Ω
ψ = ψ0 at t = 0

∂nψ = iBψ on ∂Ω

(12)

admits a unique, global-in-time solution for each ψ0 ∈ L2(Ω).
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Theorem (Robin Boundary Condition)

Let Ω ⊂ Rn be a bounded C 2 domain, and let B : H1/2(∂Ω) → H−1/2(∂Ω)
be a compact operator such that Re⟨Bχ, χ⟩H−1/2(∂Ω)×H1/2(∂Ω) ≥ 0 for all

χ ∈ H1/2(∂Ω). Then the initial-boundary value problem i∂tψ = Ĥψ in Ω
ψ = ψ0 at t = 0

∂nψ = iBψ on ∂Ω

(12)

admits a unique, global-in-time solution for each ψ0 ∈ L2(Ω).

We can prove this by explicitly constructing a contraction ΦB such that

G+ψ = ΦBG−ψ ⇐⇒ ∂nψ
∣∣
∂Ω

= iBψ
∣∣
∂Ω

(13)
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Main Results 3

(Energy-Time Uncertainty) For ψ ∈ C∞
c (Ω)and Φ contraction on

L2(∂Ω), let p = 1− limt→∞ ||e−itĤΦψ||. Then

σĤΦ,ψ
σT ,ψ ≥ p

2
. (14)

(Continuity in Φ) Let Φϵ be a family of linear contractions on L2(∂Ω).
Then

exp(−itĤΦϵ)ψ0
ϵ→0−−→ exp(−itĤΦ)ψ0 (15)

holds for all ψ0 ∈ L2(Ω) if and only if Φϵ → Φ.

Detection time distributions also depend continuously on Φ.
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Summary

We showed that for quantum particles undergoing irreversible hard
detection, the wave function of the particle before detection is
governed by a C0 contraction semigroup Wt .

We applied the theory of boundary tuples to prove that Wt

corresponds to some absorbing boundary condition
G+(ψ

∣∣
∂Ω
, ∂nψ

∣∣
∂Ω

) = ΦG−(ψ
∣∣
∂Ω
, ∂nψ

∣∣
∂Ω

).

For any such Wt , we presented a proposal for the distribution of
detection times along ∂Ω.

We showed that these distributions are stable under small
perturbations of Φ.
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Outlook

These results can be generalized for bounded Lipschitz regions Ω.

We would also like to generalize this to the relativistic case, which
involves a boundary triple construction for ĤDirac

On the physics side of things, need an experiment to test this
proposal!

But for this, we need a practical way to assign for each detector a
function B along ∂Ω.

Tumulka’s proposal: For an ideal detector most sensitive to particles
with energy κ > 0, we set the boundary condition as ∂nψ = iκψ.

Perhaps a better understanding of the spectrum of Ĥ with boundary
condition ∂nψ = iBψ will guide us to the right answer.
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Werner’s Arrival Time Proposal

Definition (Exit space)

For a C0 contraction semigroup Wt = e−itL with densely defined generator
L on a Hilbert space H, an exit space for L consists of a Hilbert space K
and a mapping j : D(L) → K satisfying

⟨jψ, jϕ⟩K = ⟨iLψ, ϕ⟩H + ⟨ψ, iLϕ⟩H = − d

dt
⟨Wtψ,Wtϕ⟩H

∣∣∣∣
t=0

. (16)

For ψ ∈ D(L), we define (Jψ) (t) : R+ → K as (Jψ) (t) := j(Wtψ) , so∫ ∞

0
||Jψ||2K(t)dt = −

∫ ∞

0

d

dt
||Wtψ||2Hdt = ||ψ||2H − lim

t→∞
||Wtψ||2H. (17)

It follows that J extends to a continuous map H → L2(R+,K).
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Werner’s Arrival Time Proposal 2

The quantity ||Jψ0||2K(t) is the rate at which probability flows from
Ω×N to Rn ×F .

J(H) ⊂ L2(R+,K) ∼= L2(R+)⊗K admits a natural time observable
T := t ⊗ 1 which can be measured alongside any exit observable of
the form 1⊗ F for F self-adjoint on K.

Theorem

Let Ω ⊂ Rn be a bounded C 2 domain, and let Wt = e−itĤΦ be a C0

contraction semigroup on L2(Ω) with generator

D(ĤΦ) := {ψ ∈ D(∆∗) : G+ψ = ΦG−ψ}, ĤΦ := (−∆+ V )∗
∣∣
D(ĤΦ)

.

(18)
Then an exit space for Wt can always be constructed with K = L2(∂Ω)

jΦ : D(ĤΦ) → L2(∂Ω), jΦψ :=
√
1− Φ∗ΦG−ψ (19)
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Detection Time Proposal

Proposal (Born Rule for Detection Times)

Let Ω ⊂ Rn be a bounded C 2 domain. Prepare the quantum particle at
time 0 with initial wave function ψ0 of unit norm and supported in Ω.

After subjecting the particle to irreversible hard autonomous detection for
all time t ≥ 0, the distribution of detection times is

Prob(t1 ≤ tD ≤ t2) = ||JΦψ0||2L2([t1,t2],L2(∂Ω)) =

∫ t2

t1

||jΦ(Wtψ0)||2L2(∂Ω) dt

(20)
for any 0 ≤ t1 ≤ t2, where Wt = exp(−itĤΦ)is the C0 contraction
semigroup mapping ψ0 to ψt . The probability that the particle is never
detected along ∂Ω is

Prob(tD = ∞) = 1− ||JΦψ0||2L2((0,∞),L2(∂Ω)) = lim
t→∞

||Wtψ||2L2(∂Ω). (21)
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Energy - Detection Time Uncertainty Principle

Theorem (Uncertainty Principle, Kiukas et. al. 2012)

For ψ ∈ D(ĤΦ) ∩ ker(jΦ) with unit norm, let p = 1− limt→∞ ||Wtψ||2L2(Ω)
denote the probability that the particle prepared in state ψ is ever
detected.

Then the energy variance σ2
ĤΦ,ψ

σ2
ĤΦ,ψ

:= ||ĤΦψ||2L2(Ω) − ⟨ψ, ĤΦψ⟩2L2(Ω) (22)

along with the conditional time variance σ2T ,ψ

σ2T ,ψ := ||t Jψ√
p
||2L2(R+,K) − ⟨ Jψ√

p
, t

Jψ
√
p
⟩2L2(R+,K) (23)

satisfy the inequality

σĤΦ,ψ
σT ,ψ ≥

√
p

2
. (24)
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σĤΦ,ψ
σT ,ψ ≥

√
p

2
. (24)

L. Frolov (Rutgers) Irreversible hard detection of non-relativistic quantum particlesFebuary 27, 2025 23 / 24



Energy - Detection Time Uncertainty Principle

Theorem (Uncertainty Principle, Kiukas et. al. 2012)
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Stability of Detection Time Distributions

Theorem (Convergence of Detection Time Distributions)

Let Φϵ : L
2(∂Ω) → L2(∂Ω) be a family of linear contractions with Φϵ → Φ

as ϵ→ 0.

Then for every ψ0 ∈ L2(Ω), the evolutions exp(−itĤΦϵ)ψ0 converge
as ϵ→ 0 in L2(Ω) to exp(−itĤΦψ0) for each t ≥ 0.

The exit space wave functions JΦϵψ0 converge as ϵ→ 0 in
L2Loc((0,∞), L2(∂Ω)) to JΦψ0.

Consequently, the detection time probabilities converge as ϵ→ 0 over
finite time intervals

lim
ϵ→0

||JΦϵψ0||2L2([t1,t2],L2(∂Ω)) = ||JΦψ0||2L2([t1,t2],L2(∂Ω)) (25)

for all ψ0 ∈ L2(Ω) and any finite time interval [t1, t2].

L. Frolov (Rutgers) Irreversible hard detection of non-relativistic quantum particlesFebuary 27, 2025 24 / 24



Stability of Detection Time Distributions

Theorem (Convergence of Detection Time Distributions)

Let Φϵ : L
2(∂Ω) → L2(∂Ω) be a family of linear contractions with Φϵ → Φ

as ϵ→ 0.

Then for every ψ0 ∈ L2(Ω), the evolutions exp(−itĤΦϵ)ψ0 converge
as ϵ→ 0 in L2(Ω) to exp(−itĤΦψ0) for each t ≥ 0.
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