Homework 1 (due 9/16 Wed)

§0.1: Sets and Set Operations

- Textbook $\S 0$ Exercise \#6
- Textbook $\S 0$ Exercise \#8
- Textbook §0 Exercise \#11

§0.2: Relations and Functions

- For any sets X, Y, Z, prove $X \times(Y \cup Z)=(X \times Y) \cup(X \times Z)$.
- Textbook §0 Exercise \#14
- Let X, Y be sets. For any function $f: X \rightarrow Y$ and any subset $A \subseteq Y$, we define the preimage of A under f to be the subset $f^{-1}(A):=\{x \in X \mid f(x) \in A\} \subseteq X$. For any function $f: X \rightarrow Y$ and any subsets $A \subseteq Y, B \subseteq Y$, prove that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.

§0.3: Mathematical Induction

- Textbook $\S 0$ Exercise \#21
- Textbook $\S 0$ Exercise \#23
- Textbook $\S 0$ Exercise \#26
- I was going to ask you to prove, for a well-ordered set X, the Principle of Complete Induction for a statement concerning a variable $x \in X$. However, after talking to some of you about the worksheet during the discussion section today, I am now having a second thought about this. Whatever I decide, I will assign one more problem (from §0.3, or possibly from §0.2) tonight.

Worksheet 1

1. Let $X=\{x, y, z\}$ and $\mathbf{2}=\{0,1\}$. Define $X^{\mathbf{2}}$ to be the set of all functions $f: \mathbf{2} \rightarrow X$, and $\mathbf{2}^{X}$ to be the set of all functions from $g: X \rightarrow \mathbf{2}$.
(a1) Write down all elements (functions) of X^{2} explicitly; this means, for each element (function), you must specify its value in the codomain at each point in the domain.
(a2) Find a natural bijective function from X^{2} to $X \times X$; a natural function here should be the one whose construction can be generalized to any finite set X.
(b1) Write down all elements (functions) of $\mathbf{2}^{X}$ explicitly; this means, for each element (function), you must specify its value in the codomain at each point in the domain.
(b2) Find a natural bijective function from $\mathbf{2}^{X}$ to the power set $\mathcal{P}(X)$; a natural function here should be the one whose construction can be generalized to any finite set X.
2. Let $a, b, n \in \mathbb{N}$ be natural numbers.
(a) Use induction to prove the Binomial Formula

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

where $\binom{n}{k}:=\frac{n!}{k!(n-k)!}$ (called a binomial coefficient) and $0!:=1$ by definition.
(b) Use the formula to show that

$$
n^{1 / n}-1<\sqrt{\frac{2}{n}}, \quad n \in \mathbb{N} \text { and } n \geq 2
$$

You may begin by writing $n^{1 / n}=1+\varepsilon$ for some $\varepsilon>0$, and raise both sides to the power n.

