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A note on PL-disks and rationally slice knots

Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke

Abstract. We give infinitely many examples of manifold-knot pairs (Y, J)
such that Y bounds an integer homology ball, J does not bound a non-locally-
flat PL-disk in any integer homology ball, but J does bound a smoothly em-
bedded disk in a rational homology ball. The proof relies on formal properties
of involutive Heegaard Floer homology.

Every knot K in S3 bounds a non-locally-flat PL-embedded disk in B4, ob-
tained by taking the cone over K. (Throughout, we will not require PL-disks to be
locally-flat.) The analogous statement does not hold for knots in more general man-
ifolds. Adam Levine [9, Theorem 1.2] found examples of manifold-knot pairs (Y, J)
such that Y bounds a contractible 4-manifold and J does not bound a PL-disk in
any homology ball X with ∂X = Y ; see also [7].

The main result of this note concerns rationally slice knots in homology spheres
bounding integer homology balls:

Theorem 1. There exist infinitely many manifold-knot pairs (Y, J) where Y
is an integer homology sphere and

(1) Y bounds an integer homology 4-ball,
(2) J does not bound a PL-disk in any integer homology 4-ball,
(3) J does bound a smoothly embedded disk in a rational homology 4-ball.

Throughout, let Y be an integer homology sphere. Recall that a knot J ⊂ Y
is rationally slice if J bounds a smoothly embedded disk in a rational homology 4-
ball W with ∂W = Y . Two manifold-knot pairs (Y0, J0) and (Y1, J1) are integrally
(respectively rationally) homology concordant if J0 and J1 are concordant in an
integral (respectively rational) homology cobordism between Y0 and Y1. A knot
J ⊂ Y is integrally (respectively rationally) homology concordant to a knot K in
S3 if and only if J ⊂ Y bounds a PL-disk in an integer (respectively rational)
homology ball.

Theorem 1 is an immediate consequence of the following theorem, where V 0

and V 0 are the involutive knot Floer homology invariants of [5] and V0 the knot
Floer homology invariant defined in [10, Section 2.2] (see also [13], [11]):
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Theorem 2. Let K be a negative amphichiral rationally slice knot in S3 with
V 0 ≥ 1 and V0 = V 0 = 0 and let μ be the core of surgery in M = S3

−1/�(K), where

� is an odd positive integer. Consider J = μ#U ⊂ M #−M , where U denotes the
unknot in −M . Then (M # −M,J) is rationally slice, hence rationally homology
concordant to a knot in S3, but (M#−M,J) is not integrally homology concordant
to any knot in S3.

Remark 3. The figure-eight satisfies the hypotheses of Theorem 2 by [3] (see
also [1, Section 3] and [5, Theorem 1.7]). More generally, the genus one knots Kn

with n positive full twists in one band and n negative full twists in the other band, n
odd, also satisfy the hypotheses of Theorem 2; see Figure 1. By [2, Theorem 4.16],
Kn is rationally slice. (Alternatively, Kn is strongly negative amphichiral, hence
rationally slice [8, Section 2].) Furthermore, σ(Kn) = 0 since Kn is amphichiral.
The knot Kn has Seifert form (

n 1
0 −n

)

which implies that Arf(Kn) = 1 if and only if n is odd. Since Kn is alternating, it
now follows from [5, Theorem 1.7] that for n odd, V 0 = 1 and V0 = V 0 = 0.

n −n

Figure 1. The knot Kn, where n and −n denote the number of
positive full twists.

Remark 4. Note that M does not bound an integer homology ball (since, for
instance, d(M) = 2V 0 �= 0), but M #−M does.

The proof of Theorem 2 is inspired by the proof of [7, Theorem 1.1(1)]. Our
proof relies on the following result from [4] relating the involutive correction term
d [5, Section 5] with the ordinary Heegaard Floer correction term d [12, Section 4],
for even denominator surgery on knots in S3:

Proposition 5 ([4, Proposition 1.7]). Let K be a knot in S3 and let p, q > 0
be relatively prime integers, with p odd and q even. Then

d(S3
p/q(K), [p/2q]) = d(S3

p/q(K), [p/2q])

where [p/2q] denotes the unique self-conjugate Spinc structure on S3
p/q(K).

The key feature from the above proposition is that for even denominator surgery
on a knot in S3, we have that d is equal to d for the unique self-conjugate Spinc

structure on the surgery. More generally, we have the following corollary of Propo-
sition 5:
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Corollary 6. Let J be a knot in an integer homology sphere Y and let p, q > 0
be relatively prime integers, with p odd and q even. If (Y, J) is integrally homology
concordant to a knot in S3, then

d(Yp/q(J), [p/2q]) = d(Yp/q(J), [p/2q])

where [p/2q] denotes the unique self-conjugate Spinc structure on Y 3
p/q(J).

Proof. If (Y, J) is integrally homology concordant to a knot (S3,K), then
Y 3
p/q(J) and S3

p/q(K) are integrally homology cobordant; the homology cobordism

is given by surgering along the concordance annulus from (Y, J) to (S3,K). Since d
and d are invariants of integer homology cobordism, the result follows from Propo-
sition 5. �

The proof of Theorem 2 relies on finding manifold-knot pairs (Y, J) where d and
d of even denominator surgery along J differ; the result then follows from Corollary
6.

Proof of Theorem 2. We first show that (M # −M,J) is rationally slice.
Since K is rationally slice, the core of surgery in M = S3

−1/�(K) is rationally

homology concordant to the core of surgery in S3
−1/�(U), which is the unknot in

S3; that is, (M,μ) is rationally slice. Hence (M #−M,J) is also rationally slice.
We now show that (M #−M,J) is not integrally homology concordant to any

knot in S3. Since μ is the core of surgery in S3
−1/�(K), we have that

M1/n(μ) = S3
1/(n−�)(K).

Choose an even positive integer n such that n > �. Since � is odd, n is even, and
n− � > 0, by [4, Proposition 1.7] we have that

d(M1/n(μ)) = d(S3
1/(n−�)(K)) = −2V 0(K)

and

d(M1/n(μ)) = d(S3
1/(n−�)(K)) = −2V0(K) = 0.

Since J = μ#U ⊂ M #−M , we have that

(M #−M)1/n(J) = M1/n(μ) #−M.

Note that −M = S3
1/�(−K) = S3

1/�(K), where the last equality follows from the

fact that K is negative amphichiral. Since � > 0, [4, Proposition 1.7] implies that

d(−M) = −2V 0(K) and d(−M) = d(−M) = 0.

Recall that [6, Proposition 1.3] states that if Y1 and Y2 are integer homology spheres,
then

d(Y1#Y2) ≤ d(Y1) + d(Y2).

Hence d(M1/n(μ) # −M) ≤ −2V 0(K). Since d is additive under connected sum,
we have that d(M1/n(μ) #−M) = 0.

We have shown that

d((M #−M)1/2(J)) ≤ −2V 0(K) and d((M #−M)1/2(J)) = 0.

Recall that V 0(K) ≥ 1. Now by Corollary 6, it follows that (M # −M,J) is not
integrally homology concordant to any knot in S3. �
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