A note on knot concordance and involutive knot Floer homology

Kristen Hendricks and Jennifer Hom

ABSTRACT. We prove that if two knots are concordant, then their involutive knot Floer complexes satisfy a certain type of stable equivalence.

1. Introduction

The knot Floer homology package of Ozsváth-Szabó [OS04] and Rasmussen [Ras03] has many applications to concordance. For example, many different smooth concordance invariants can be extracted from the filtered chain homotopy type of the knot Floer complex, such as τ [OS03], $\Upsilon(t)$ [OSS17], and ν^+ [HW16]. Furthermore, the second author [Hom14] showed that, modulo an appropriate equivalence relation, the set of knot Floer complexes forms a group, and that there is a homomorphism from the knot concordance group to this group. In [Hom17, Theorem 1], she showed that if two knots are concordant, then their knot Floer complexes satisfy a certain type of stable equivalence.

Recently, Manolescu and the first author [HM17a] used the conjugation symmetry on Heegaard Floer complexes to define involutive Heegaard Floer homology. They similarly considered the conjugation action on the knot Floer complex. Zemke [Zem17] showed that, under an appropriate equivalence relation, the set of knot Floer complexes together with the extra structure given by the conjugation action form a group, and that there is a homomorphism from the knot concordance group to this group. The aim of this note is to prove an involutive analog of [Hom17, Theorem 1]. Throughout, $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$.

THEOREM 1. If K is slice, then $(CFK^{\infty}(K), \iota_K)$ is filtered chain homotopic to $(\mathbb{F}[U, U^{-1}], \mathrm{id}) \oplus (A, \iota_A)$, where A is acyclic, i.e., $H_*(A) = 0$.

COROLLARY 2. If K_1 and K_2 are concordant, then we have the following filtered chain homotopy equivalence

 $(CFK^{\infty}(K_1),\iota_{K_1})\oplus (A_1,\iota_{A_1})\simeq (CFK^{\infty}(K_2),\iota_{K_2})\oplus (A_2,\iota_{A_2}),$

where A_1, A_2 are acyclic, i.e., $H_*(A_1) = H_*(A_2) = 0$.

O2019 Kristen Hendricks and Jennifer Hom

²⁰¹⁰ Mathematics Subject Classification. Primary 57M27, 57M25.

The first author was partially supported by NSF grant DMS-1663778.

The second author was partially supported by NSF grant DMS-1552285 and a Sloan Research Fellowship.

2. Background

In 2013, Manolescu introduced a Pin(2)-equivariant version of Seiberg-Witten Floer homology and used it to resolve the Triangulation Conjecture [Man16]. Since then, several authors have given applications of this invariant, especially to the homology cobordism group [Man14, Lin15b, Sto15b, Sto15a, Sto16]. F. Lin also gave a reformulation to monopole Floer homology, and deduced various applications [Lin14, Lin15a, Lin16c, Lin16b, Lin16a].

Two years later, Manolescu and the first author introduced a shadow of *Pin*(2)equivariant Seiberg-Witten Floer homology, called *involutive Heegaard Floer homology* [HM17b], in Ozsváth-Szabó's Heegaard Floer homology [OSz04]. Involutive Heegaard Floer homology has had a number of applications, again mainly to the homology cobordism group [HMZ17, BH16, DM17, Zem17, HL17].

Like ordinary Heegaard Floer homology, involutive Heegaard Floer homology has a version for knots: Manolescu and the first author associate to a knot K an order-four symmetry ι_K on the knot Floer complex $CFK^{\infty}(K)$, and extract various concordance invariants from this data [HM17b]. In [Zem17], Zemke studies the behavior of these complexes and the associated involutions under connected sum. In this section, we recap some of his definitions and results, in preparation for proving Theorem 1 in Section 3. We begin with the following definition, which is a specialization of [Zem17, Definition 2.2].

DEFINITION 2.1. We say that $(C, \partial, B, \iota_C)$ is an ι_K -complex if

- (C, ∂) is a finitely-generated, free, \mathbb{Z} -graded, $(\mathbb{Z} \oplus \mathbb{Z})$ -filtered, $\mathbb{F}[U, U^{-1}]$ complex with a filtered basis B;
- Given an element $x \in B$, $\partial x = \sum_{y \in B} U^{n_y} y$ for some set of integers $n_y \ge 0$;
- The action of U lowers homological grading by 2 and each filtration level by 1;
- There is an isomorphism $H_*(C, \partial) \cong \mathbb{F}[U, U^{-1}];$
- ι_C is a skew-filtered U-equivariant endomorphism of C;
- $\iota_C^2 \simeq \operatorname{id} + \Phi_B \circ \Psi_B$, where $\Phi_B \colon C \to C$ and $\Psi_B \colon C \to C$ are formal derivatives of ∂ .

(For more on the definition of the maps Φ_B and Ψ_B , see [**Zem17**, p. 7].)

Typically we omit the differential and basis from the notation. This definition is not quite Zemke's; one can think of our ι_K -complexes as the part of his ι_K complexes concentrated in Alexander grading zero [**Zem17**, Remark 2.3]. If K is a knot, then $(CFK^{\infty}(K), \iota_K)$ can be made into an ι_K -complex by picking a basis for $CFK^{\infty}(K)$. The following notion of equivalence between two ι_K -complexes is particularly useful for studying concordance.

DEFINITION 2.2. [Zem17, Definition 2.4] Two ι_K -complexes (C_1, ι_{C_1}) and (C_2, ι_{C_2}) are said to be *locally equivalent* if there are filtered, grading-preserving $\mathbb{F}[U, U^{-1}]$ -equivariant chain maps

$$F: C_1 \to C_2 \qquad \qquad G: C_2 \to C_1$$

such that F and G induce isomorphisms on homology and furthermore

$$F \circ \iota_{C_1} \simeq \iota_{C_2} \circ F \qquad \qquad G \circ \iota_{C_2} \simeq \iota_{C_1} \circ G$$

via skew-filtered U-equivariant chain homotopy equivalences. (If in addition $F \circ G \simeq$ id and $G \circ F \simeq$ id via filtered U-equivariant chain homotopy equivalences, the ι_{K} -complexes are said to be homotopy equivalent.)

One can define two possible products on the set of ι_K -complexes, denoted \times_1 and \times_2 , and given by

$$(C_1, \iota_{C_1}) \times_1 (C_2, \iota_{C_2}) = (C_1 \otimes C_2, \iota_{C_1} \otimes \iota_{C_2} + (\Phi_{B_1} \otimes \Psi_{B_2}) \circ (\iota_{C_1} \otimes \iota_{C_2}))$$
$$(C_1, \iota_{C_1}) \times_2 (C_2, \iota_{C_2}) = (C_1 \otimes C_2, \iota_{C_1} \otimes \iota_{C_2} + (\Psi_{B_1} \otimes \Phi_{B_2}) \circ (\iota_{C_1} \otimes \iota_{C_2}))$$

Zemke shows that $(C_1, \iota_{C_1}) \times_1 (C_2, \iota_{C_2})$ is filtered chain-homotopy equivalent to $(C_1, \iota_{C_1}) \times_2 (C_2, \iota_{C_2})$. Following similar work in [**Sto15b**] and [**HMZ17**], Zemke further shows that either of these products makes the set of ι_K -complexes up to the relationship of local equivalence into an abelian group \mathfrak{I}_K [**Zem17**, Proposition 2.6]. One then obtains a homomorphism from \mathcal{C} the smooth knot concordance group to \mathfrak{I}_K as follows.

PROPOSITION 2.3. [Zem17, Theorem 1.5] Let C be the smooth knot concordance group. The map

$$\mathcal{C} \to \mathfrak{I}_K$$
$$K \mapsto [CFK^{\infty}(K), \iota_K]$$

is a well-defined group homomorphism.

Zemke [**Zem17**, Definition 2.5 and Proposition 2.6] shows that the inverse of $[C, \iota_C]$ is $[C^*, \iota_C^*]$, where $C^* = \operatorname{Hom}_{\mathbb{F}[U, U^{-1}]}(C, \mathbb{F}[U, U^{-1}])$, the map ι^* is the dual of ι , and B^* is a dual basis to B. The identity element of \mathfrak{I}_K is $[\mathbb{F}[U, U^{-1}], \operatorname{id}]$.

3. Proof of Theorem

Since Zemke [Zem17, Theorem 1.5] showed that concordant knots have locally equivalent ι_K -complexes, Theorem 1 and Corollary 2 follow immediately from the following proposition and corollary.

PROPOSITION 3.1. If (C, ι_C) is locally equivalent $(\mathbb{F}[U, U^{-1}], \mathrm{id})$, then (C, ι_C) is filtered chain homotopy equivalent to

$$(\mathbb{F}[U, U^{-1}], \mathrm{id}) \oplus (A, \iota_A),$$

where A is some acyclic complex, i.e., $H_*(A) = 0$.

Here (A, ι_A) is not technically an ι_K complex, because $H_*(A)$ is trivial rather than $\mathbb{F}[U, U^{-1}]$. The notation should be taken to indicate that (A, ι_A) satisfies all other structural requirements in the definition of an ι_K -complex.

COROLLARY 3.2. Two ι_K -complexes (C_1, ι_{C_1}) and (C_2, ι_{C_2}) are locally equivalent if and only if there is a filtered chain homotopy equivalence

$$(C_1, \iota_{C_1}) \oplus (A_1, \iota_{A_1}) \simeq (C_2, \iota_{C_2}) \oplus (A_2, \iota_{A_2}),$$

for some acyclic complexes A_1 and A_2 .

PROOF OF COROLLARY 3.2. The reverse direction is straightforward: $(C_1, \iota_{C_1}) \oplus (A_1, \iota_{A_1})$ is locally equivalent to (C_1, ι_{C_1}) , so if $(C_1, \iota_{C_1}) \oplus (A_1, \iota_{A_1})$ is filtered homotopy equivalent to $(C_2, \iota_{C_2}) \oplus (A_2, \iota_{A_2})$, or even merely locally equivalent, then (C_1, ι_{C_1}) is locally equivalent to (C_2, ι_{C_2}) .

We now turn to the forward direction. If (C_1, ι_{C_1}) and (C_2, ι_{C_2}) are locally equivalent, then by [**Zem17**, Proposition 2.6] $(C_1, \iota_{C_1}) \times (C_2^*, \iota_{C_2}^*)$ is locally equivalent to $(\mathbb{F}[U, U^{-1}], \mathrm{id})$, where \times denotes either \times_1 or \times_2 . Then by Proposition 3.1, $(C_1, \iota_{C_1}) \times (C_2^*, \iota_{C_2}^*)$ is filtered chain homotopy equivalent to $(\mathbb{F}[U, U^{-1}], \mathrm{id}) \oplus (A, \iota_A)$.

Consider $(C_1, \iota_{C_1}) \times (C_2^*, \iota_{C_2}^*) \times (C_2, \iota_{C_2})$. By [**Zem17**, Theorem 1.1], the product × respects splittings and $(\mathbb{F}[U, U^{-1}], \mathrm{id})$ is the identity element with respect to ×. Then

$$((C_1,\iota_{C_1})\times(C_2^*,\iota_{C_2}^*))\times(C_2,\iota_{C_2})\simeq ((\mathbb{F}[U,U^{-1}],\mathrm{id})\oplus(A,\iota_A))\times(C_2,\iota_{C_2})$$
$$\simeq (C_2,\iota_{C_2})\oplus(A',\iota_A'),$$

where $(A', \iota'_A) = (A, \iota_A) \times (C_2, \iota_{C_2})$. Similarly, for some acyclic complex D, we have

$$(C_1, \iota_{C_1}) \times ((C_2^*, \iota_{C_2}^*) \times (C_2, \iota_{C_2})) \simeq (C_1, \iota_{C_1}) \times ((\mathbb{F}[U, U^{-1}], \mathrm{id}) \oplus (D, \iota_D))$$
$$\simeq (C_1, \iota_{C_1}) \oplus (D', \iota'_D),$$

where $(D', \iota'_D) = (D, \iota_D) \times (C_2, \iota_{C_2})$. This concludes the proof of the corollary. \Box

Using the language of local equivalence, we reprove [Hom17, Theorem 1].

LEMMA 3.3. If (C, ι_C) is locally equivalent to $(\mathbb{F}[U, U^{-1}], \mathrm{id})$, then C is filtered chain homotopic to $\mathbb{F}[U, U^{-1}] \oplus A$ for some acyclic complex A.

PROOF OF LEMMA 3.3. Since (C, ι_C) and $(\mathbb{F}[U, U^{-1}], \mathrm{id})$ are locally equivalent, there exist grading-preserving, filtered chain maps

$$F: \mathbb{F}[U, U^{-1}] \to C$$
$$G: C \to \mathbb{F}[U, U^{-1}]$$

that induce isomorphisms on homology. Since $\mathbb{F}[U, U^{-1}]$ is isomorphic to its homology, G is surjective and $G \circ F = \mathrm{id}$. Then a standard algebra argument shows that C is filtered isomorphic to $\mathbb{F}[U, U^{-1}] \oplus \ker G$. Namely, $\Phi \colon \mathbb{F}[U, U^{-1}] \oplus \ker G \to C$ given by $(x, y) \mapsto x + y$ and $\Psi \colon C \to \mathbb{F}[U, U^{-1}] \oplus \ker G$ given by $z \mapsto (F \circ G(z), z + F \circ G(z))$ provide the necessary isomorphisms, where we identify $\mathbb{F}[U, U^{-1}]$ with im F. \Box

Notice that in general ι_C does not respect the splitting in the above lemma. However, we will show that ι_C is homotopic to a map that does split.

PROOF OF PROPOSITION 3.1. By Lemma 3.3, we may assume C is of the form $\mathbb{F}[U, U^{-1}] \oplus A$. Since (C, ι_C) and $(\mathbb{F}[U, U^{-1}], \mathrm{id})$ are locally equivalent, there exist grading-preserving, filtered chain maps

$$F: (\mathbb{F}[U, U^{-1}], \mathrm{id}) \to (C, \iota_C)$$
$$G: (C, \iota_C) \to (\mathbb{F}[U, U^{-1}], \mathrm{id})$$

such that $F \circ id \simeq \iota_C \circ F$ via a skew-filtered chain homotopy H_F and $G \circ \iota_C \simeq id \circ G$ via a skew-filtered chain homotopy H_G .

We consider the splitting given in Lemma 3.3. Let $p_i \colon \mathbb{F}[U, U^{-1}] \oplus A \to \mathbb{F}[U, U^{-1}] \oplus A$ denote projection onto the *i*th factor. We have that $p_1 = F \circ G$ and $p_2 = \mathrm{id} + F \circ G$.

Define

$$\iota'_C(x,y) = (x,0) + p_2 \circ \iota_C(0,y)$$

We claim that $\iota_C \simeq \iota'_C$ via the homotopy $J = H_F \circ G + F \circ H_G \circ p_2$. Indeed,

$$\begin{split} \iota_C(x,y) + \iota'_C(x,y) \\ &= \iota_C(x,0) + \iota_C(0,y) + (x,0) + p_2 \circ \iota_C(0,y) \\ &= \iota_C(x,0) + \iota_C(0,y) + (x,0) + \iota_C(0,y) + F \circ G \circ \iota_C(0,y) \\ &= \iota_C \circ F \circ G(x,y) + F \circ \mathrm{id} \circ G(x,y) + F \circ G \circ \iota_C(0,y) + F \circ \mathrm{id} \circ G(0,y) \\ &= \partial \circ H_F \circ G(x,y) + H_F \circ \partial \circ G(x,y) + F \circ \partial \circ H_G(0,y) + F \circ H_G \circ \partial(0,y) \\ &= \partial \circ J(x,y) + J \circ \partial(x,y). \end{split}$$

It is straightforward to check that ι'_C respects the splitting $\mathbb{F}[U, U^{-1}] \oplus A$ and that it is the identity on the first factor, as desired. \Box

Acknowledgments

We thank Tye Lidman, Charles Livingston, Ciprian Manolescu, Matt Stoffregen, and Ian Zemke for helpful conversations. We also thank the anonymous referee for helpful comments.

References

- [BH16] Maciej Borodzik and Jennifer Hom, Involutive Heegaard Floer homology and rational cuspidal curves, Proc. Lond. Math. Soc (Published online July 26, 2018), DOI 10.1112/plms.12179.
- [DM17] Irving Dai and Ciprian Manolescu, Involutive Heegaard Floer homology and plumbed three-manifolds, J. Inst. Math. Jussieu (Published online September 4, 2017), DOI 10.1017/S1474748017000329.
- [HL17] Kristen Hendricks and Robert Lipshitz, Involutive bordered Floer homology, 2017, preprint, arXiv:1706.06557. To appear in Trans. Amer. Math. Soc.
- [HM17a] Kristen Hendricks and Ciprian Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299, DOI 10.1215/00127094-3793141. MR3649355
- [HM17b] Kristen Hendricks and Ciprian Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299, DOI 10.1215/00127094-3793141. MR3649355
- [HMZ17] Kristen Hendricks, Ciprian Manolescu, and Ian Zemke, A connected sum formula for involutive Heegaard Floer homology, Selecta Math. (2017), 1–63.
- [Hom14] Jennifer Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537–570, DOI 10.4171/CMH/326. MR3260841
- [Hom17] Jennifer Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24, DOI 10.1142/S0218216517400156. MR3604497
- [HW16] Jennifer Hom and Zhongtao Wu, Four-ball genus bounds and a refinement of the Ozváth-Szabó tau invariant, J. Symplectic Geom. 14 (2016), no. 1, 305–323, DOI 10.4310/JSG.2016.v14.n1.a12. MR3523259
- [Lin14] Francesco Lin, A Morse-Bott approach to monopole Floer homology and the triangulation conjecture, Mem. Amer. Math. Soc. 255 (2018), no. 1221, v+162, DOI 10.1090/memo/1221. MR3827053
- [Lin15a] Francesco Lin, The surgery exact triangle in Pin(2)-monopole Floer homology, Algebr. Geom. Topol. 17 (2017), no. 5, 2915–2960, DOI 10.2140/agt.2017.17.2915. MR3704248
- [Lin15b] Jianfeng Lin, Pin(2)-equivariant KO-theory and intersection forms of spin 4-manifolds, Algebr. Geom. Topol. 15 (2015), no. 2, 863–902, DOI 10.2140/agt.2015.15.863. MR3342679
- [Lin16a] Francesco Lin, Khovanov homology in characteristic two and involutive monopole Floer homology, 2016, preprint, arXiv:1610.08866. To appear in Math. Ann.

- [Lin16b] _____, Manolescu correction terms and knots in the three-sphere, 2016, preprint, arXiv:1607.05220.
- [Lin16c] Francesco Lin, Pin(2)-monopole Floer homology, higher compositions and connected sums, J. Topol. 10 (2017), no. 4, 921–969, DOI 10.1112/topo.12027. MR3705144
- [Man14] Ciprian Manolescu, On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014), no. 3-4, 695–728, DOI 10.1007/s00208-014-1010-1. MR3231012
- [Man16] Ciprian Manolescu, Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016), no. 1, 147–176, DOI 10.1090/jams829. MR3402697
- [OS03] Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639, DOI 10.2140/gt.2003.7.615. MR2026543
- [OS04] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116, DOI 10.1016/j.aim.2003.05.001. MR2065507
- [OSS17] Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. **315** (2017), 366–426, DOI 10.1016/j.aim.2017.05.017. MR3667589
- [OSz04] Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158, DOI 10.4007/annals.2004.159.1027. MR2113019
- [Ras03] Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR2704683
- [Sto15a] Matthew Stoffregen, Manolescu invariants of connected sums, Proc. Lond. Math. Soc.
 (3) 115 (2017), no. 5, 1072–1117, DOI 10.1112/plms.12060. MR3733559
- [Sto15b] Matthew Henry Stoffregen, Applications of Pin(2)-equivariant Seiberg-Witten Floer Homology, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–University of California, Los Angeles. MR3697767
- [Sto16] Matthew Stoffregen, A remark on Pin(2)-equivariant Floer homology, Michigan Math.
 J. 66 (2017), no. 4, 867–884, DOI 10.1307/mmj/1508810818. MR3720328
- [Zem17] Ian Zemke, Connected sums and involutive link Floer homology, 2017, preprint, arXiv:1705.01117. To appear in Proc. Lond. Math. Soc.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824

 $Email \ address: {\tt hendricks@math.msu.edu}$

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA 30332 *Email address:* hom@math.gatech.edu

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

118