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Abstract
We prove a formula for the involutive concordance
invariants of the cabled knots in terms of those of the
companion knot and the pattern knot. As a conse-
quence, we show that any iterated cable of a knot with
parameters of the form (odd,1) is not smoothly slice as
long as either of the involutive concordance invariants of
the knot is nonzero. Our formula also gives new bounds
for the unknotting number of a cabled knot, which are
sometimes stronger than other known bounds coming
from knot Floer homology.
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1 INTRODUCTION

Cabling is a natural operation on a knot which acts on the smooth concordance group. There has
been considerable interest in characterizing the behavior of various knot concordance invariants
under cabling. Typically, one hopes to prove a formula which relates the values of some concor-
dance invariant of a cabled knot to the value of the invariant on the companion knot and the
value of the invariant on the pattern knot, in this case a torus knot. Some examples of invariants
which are known to admit such formulae include the Levine–Tristram signatures [16], the Hee-
gaard Floer 𝜏-invariant and 𝜖-invariant [5, 11, 27], Rasmussen’s𝑉0-invariant [14], and theHeegaard
Floer 𝜈+-invariant [29], among others.
Recently, concordance invariants stemming from the involutive variant of Heegaard Floer

homology defined by the first author and Manolescu [9] have been shown to be fruitful in many
applications. In this paper, we will be interested in the concordance invariants 𝑉

0
(𝐾) and 𝑉0(𝐾),
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1594 HENDRICKS and MALLICK

which can be thought of as the involutive analog of Rasmussen’s 𝑉0(𝐾) invariant [9, subsection
6.7]. An early indication of the utility of these invariants was that the involutive concordance
invariants are able to detect nonsliceness of certain rationally slice knots. Later, equivariant refine-
ments of these invariants defined by the second author, Dai, and Stoffregen [3, 17] were used in to
show that (2,1)-cable of the figure-eight knot is not smoothly slice [2].
In this article, we give the cabling formula for the involutive concordance invariants. Let 𝐾𝑝,𝑞

denote the (𝑝, 𝑞)-cable of a knot 𝐾, and 𝑉𝑠 represent the generalization [20] of Rasmussen’s 𝑉0-
invariant [28, Definition 7.1].

Theorem 1.1. Let 𝑝 and 𝑞 be positive integers with (𝑝, 𝑞) = 1. Then the involutive concordance
invariants satisfy the following relations.

(1) If 𝑝 is odd, we have

𝑉
0
(𝐾𝑝,𝑞) = 𝑉

0
(𝐾) + 𝑉0(𝑇𝑝,𝑞), 𝑉0(𝐾𝑝,𝑞) = 𝑉0(𝐾) + 𝑉0(𝑇𝑝,𝑞).

(2) If 𝑝 is even,

𝑉
0
(𝐾𝑝,𝑞) = max

{
𝑉⌊

𝑠

𝑝

⌋(𝐾), 𝑉⌊
𝑝+𝑞−1−𝑠

𝑝

⌋(𝐾)
}

+ 𝑉0(𝑇𝑝,𝑞), 𝑉0(𝐾𝑝,𝑞) = 𝑉0(𝑇𝑝.𝑞),

where 𝑠 ≡ 𝑝+𝑞−1

2
(mod 𝑞) and 0 ⩽ 𝑠 ⩽ 𝑞 − 1.

Theorem 1.1 implies that the involutive concordance invariants are determined by the knot
Floer homology when the longitudinal winding parameter 𝑝 is even. On the other hand, when
𝑝 is odd, the involutive concordance invariants incorporate the corresponding invariants for the
companion knot.
Theorem 1.1 implies the following corollary. Let 𝐾𝑝1,𝑞1;𝑝2,𝑞2;𝑝3,𝑞3;⋯;𝑝𝑘,𝑞𝑘

represent the iterated
cable of the knot 𝐾. For example, 𝐾𝑝1,𝑞1;𝑝2,𝑞2

is the (𝑝2, 𝑞2)-cable of the (𝑝1, 𝑞1)-cable of 𝐾.

Corollary 1.2. If the parameters 𝑝𝑖 are all odd and positive, and either 𝑉0(𝐾) or 𝑉0
(𝐾) is nonzero,

then 𝐾𝑝1,1;𝑝2,1;𝑝3,1;⋯;𝑝𝑘,1
is not smoothly slice.

Corollary 1.2 is related to a famous open question by Miyazaki [18, Question 3] which asks
whether there are nonslice knots 𝐾 for which the cable knot 𝐾𝑝,1 is slice.

Remark 1.3. It is possible to produce examples of topologically (and therefore algebraically) slice
knots which are trivial with respect to ordinary Heegaard Floer homology and involutively non-
trivial, for which the corollary above detects nonsliceness of the cable; for example, one such
family appears in [12, Theorem 1.1]. The authors are, however, not presently aware of a family of
examples which are not better elucidated by other methods.

We now explain the strategy for the proof of Theorem 1.1. A direct approach would be to deter-
mine the full involutive knot Floer invariant of the cabled knot, which takes the form of the knot
Floer chain complex of Ozsváth–Szabó and Rasmussen CFK(𝐾) together with the knot conjuga-
tion symmetry 𝜄𝐾 on the complex. The involutive concordance invariants of the knot may then
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A NOTE ON CABLES AND THE INVOLUTIVE CONCORDANCE INVARIANTS 1595

in principle be extracted from these data. However, it is challenging to compute the full knot
Floer chain complex for a general cabled knot, and additionally challenging to determine the
symmetry 𝜄𝐾 . In general, direct computations of 𝜄𝐾 have only been carried out for simple chain
complexes in which the map is determined by its algebraic properties, and for tensor products of
those complexes.
Instead, our proof takes an indirect approach, using certain consequences of the surgery for-

mula in involutive Heegaard Floer homology proved by Hom–Stoffregen–Zemke and the first
author [7] to deduce the formulae presented in Theorem 1.1. This approach is similar to one
used by Ni-Wu to compute the Heegaard Floer correction terms of three-manifolds using surgery
formulae [20].

1.1 Applications to the unknotting number

We now discuss an application of Theorem 1.1 to the unknotting number. Recall that the unknot-
ting number 𝑢(𝐾) of a knot 𝐾 is the minimum number of times the knot must be passed through
itself to turn it into anunknot. There aremanywell-knownbounds in the literature for the unknot-
ting number of a knot. In one recent example, in [1], Alishahi and Eftekhary gave a bound using
the torsion order of the 𝐻𝐹𝐾− flavor of the knot Floer homology. This bound was later used
by Hom, Lidman, and Park [13] to give bounds for the unknotting number of cabled knots. In
particular, the authors showed that

𝑢(𝐾𝑝,𝑞) ⩾ 𝑝.

It is also well-known that the unknotting number is greater than or equal to the slice genus of the
knot. Hence using the relationship of Rasmussen’s 𝑉0 invariant to the slice genus [28], together
with the cabling formula for the 𝑉0-invariant [14], one can also write down the bounds

𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉0(𝐾) + 2𝑉0(𝑇𝑝,𝑞), if g4(𝐾𝑝,𝑞) is even

and

𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉0(𝐾) + 2𝑉0(𝑇𝑝,𝑞) − 1, if g4(𝐾𝑝,𝑞) is odd.

In particular, without knowing the slice genus of the knot, we have that

𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉0(𝐾) + 2𝑉0(𝑇𝑝,𝑞) − 1.

Using Theorem 1.1, we improve the above bounds:

Theorem 1.4. Let 𝐾𝑝,𝑞 be a cabled knot with 𝑝 odd. Then

𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉
0
(𝐾) + 2𝑉0(𝑇𝑝,𝑞) − 2 and 𝑢(𝐾𝑝,𝑞) ⩾ −2𝑉0(𝐾) − 2𝑉0(𝑇𝑝,𝑞) − 2.

More precisely, one has

(1) 𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉
0
(𝐾) + 2𝑉0(𝑇𝑝.𝑞) − 1 and 𝑢(𝐾𝑝,𝑞) ⩾ −2𝑉0(𝐾) − 2𝑉0(𝑇𝑝,𝑞) − 1, g4(𝐾𝑝,𝑞) odd,
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1596 HENDRICKS and MALLICK

(2) 𝑢(𝐾𝑝,𝑞) ⩾ 2𝑉
0
(𝐾) + 2𝑉0(𝑇𝑝,𝑞) − 2 and 𝑢(𝐾𝑝,𝑞) ⩾ −2𝑉0(𝐾) − 2𝑉0(𝑇𝑝,𝑞) − 2, g4(𝐾𝑝,𝑞) even

although of course one in general one would like to apply Theorem 1.4 in situations where the
slice genus is unknown.

Remark 1.5. A statement similar to Theorem 1.4 could also be made for the 4-dimensional posi-
tive clasp number of a knot in place of the unknotting number. In another direction, because 𝑉

0

and 𝑉0 are concordance invariants, the bound from Theorem 1.4 is in fact a bound on the concor-
dance unknotting number of 𝐾𝑝,𝑞, which is to say the minimum unknotting number of a knot 𝐽
concordant to 𝐾𝑝,𝑞.

In Example 4.1, we show that there are infinitely many knots for which the bound from
Theorem 1.4 is stronger than that from [13] or the aforementioned bound from the 𝑉0-invariant.

1.2 Organization

This paper is organized as follows. In Section 2, we review the definition of the involutive con-
cordance invariants and structural features of the involutive surgery formula. We then prove
Theorem 1.1, Corollary 1.2, and Theorem 1.4 in Section 3. Finally, in Section 4 we consider an
example in which our formula improves on other bounds from knot Floer homology.

2 BACKGROUND ON INVOLUTIVE HEEGAARD FLOER
HOMOLOGY

In this section, we briefly recall the definition of the involutive knot concordance invariants of
a knot and the involutive correction terms of a three-manifold from [9] and their relationship to
surgeries on the knot [7]. We begin by recalling the algebraic setup.

Definition 2.1. An iota-complex is a pair (𝐶, 𝜄) of the following form.

∙ 𝐶 is an absolutely ℚ-graded and relatively ℤ-graded finitely-generated chain complex over
𝔽2[𝑈] with the property that 𝑈−1𝐻∗(𝐶) ≃ 𝔽2[𝑈,𝑈

−1] with some grading shift.
∙ 𝜄 is a grading-preserving chain map such that 𝜄2 is chain homotopic to the identity.

To a rational homology sphere 𝑌 together with a spinc structure 𝔰 on 𝑌, Ozsváth and Szabó’s
Heegaard Floer homology associates a chain complex 𝐶𝐹−(𝑌, 𝔰) [22, 23]; if 𝔰 is conjugation-
invariant, involutive Floer homology appends to these data a chain map 𝜄. The pair (𝐶𝐹−(𝑌, 𝔰), 𝜄)

is an iota-complex in the sense of Definition 2.1.
The involutive Heegaard Floer invariants satisfy a tidy connected sum formula, as follows.

𝐶𝐹−(𝑌1#𝑌2, 𝔰1#𝔰2, 𝜄) ≃ (𝐶𝐹−(𝑌1, 𝔰1) ⊗ 𝐶𝐹−(𝑌2, 𝔰2), 𝜄1 ⊗ 𝜄2). (1)

That is, the two complexes are chain homotopy equivalent via maps which commute up to homo-
topy with the involutions in their pairs. This relationship is sometimes called a strong equivalence.
The statement for the chain complexes is due to [22, section 6] and the statement for the involution
is due to [10, Theorem 1.1].
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A NOTE ON CABLES AND THE INVOLUTIVE CONCORDANCE INVARIANTS 1597

In ordinary Heegaard Floer homology, the 𝑑-invariant of a chain complex𝐶 satisfying the crite-
rion above is themaximumgrading of an element 𝑎 in𝐶 such that [𝑈𝑛𝑎] ≠ 0 for all positive 𝑛, and
the 𝑑-invariant or correction term of (𝑌, 𝔰) is 𝑑(CF−(𝑌, 𝔰)) [21]. From this, one may extract Ras-
mussen’s concordance invariant 𝑉0 as 𝑉0(𝐾) = −

1

2
𝑑(𝐶𝐹−(𝑆3

+1
(𝐾)) [24, 26, 28]. The 𝑑-invariant is

additive under connected sum; that is,

𝑑((𝑌1#𝑌2), 𝔰1#𝔰2) = 𝑑(𝑌1, 𝔰1) + 𝑑(𝑌2, 𝔰2). (2)

An important special case is that of the lens space𝐿(𝑝, 𝑞). The iota-complex associated to𝐿(𝑝, 𝑞)
in any spinc structure 𝔰 is a copy of the pair (𝔽2[𝑈], Id), with the grading of the element 1 in 𝔽2[𝑈]
being 𝑑(𝐿(𝑝, 𝑞), 𝔰). Therefore, taking the connected sum with a lens space has the sole effect of
imposing a grading shift on (𝐶𝐹−(𝑌), 𝔰).
We may now define the involutive variants of the 𝑑-invariant. We follow [10, Lemma 2.12],

which is a reformulation of the original definitions from [9].

Definition 2.2. Let (𝐶, 𝜄) be an iota-complex. Then 𝑑(𝐶, 𝜄) is the maximum grading of a homoge-
neous cycle 𝑎 ∈ 𝐶 such that [𝑈𝑛𝑎] ≠ 0 for all positive 𝑛 and furthermore there exists an element
𝑏 such that 𝜕𝑏 = (id + 𝜄)𝑎.

Definition 2.3. Let (𝐶, 𝜄) be an iota-complex. Consider triples (𝑥, 𝑦, 𝑧) consisting of elements of
𝐶, with at least one of 𝑥 or 𝑦 nonzero such that 𝜕𝑦 = (id + 𝜄)𝑥, 𝜕𝑧 = 𝑈𝑚𝑥, for some 𝑚 ⩾ 0 and
[𝑈𝑛(𝑈𝑚𝑦 + (id + 𝜄)𝑧)] ≠ 0 for all 𝑛 ⩾ 0. If 𝑥 ≠ 0, assign this triple the value gr(𝑥) + 1; if 𝑥 = 0,
assign this triple the value gr(𝑦). Then 𝑑(𝐶, 𝜄) is defined as the maximum of these grading values
across all valid triples (𝑥, 𝑦, 𝑧).

Given a three-manifold 𝑌 with conjugation-invariant spinc-structure 𝔰, we say that 𝑑(𝑌, 𝔰) =
𝑑(𝐶𝐹−(𝑌, 𝔰)) and likewise 𝑑(𝑌, 𝔰) = 𝑑(𝐶𝐹−(𝑌, 𝔰)). The invariants 𝑑 and 𝑑 are not additive under
connected sum, but instead, for 𝔰 = 𝔰1#𝔰2, satisfy the following [10, Proposition 1.3]:

𝑑(𝑌1, 𝔰1) + 𝑑(𝑌2, 𝔰2) ⩽ 𝑑(𝑌1#𝑌2, 𝔰) ⩽ 𝑑(𝑌1, 𝔰1) + 𝑑(𝑌2, 𝔰2) ⩽ 𝑑(𝑌1#𝑌2, 𝔰)

⩽ 𝑑(𝑌1, 𝔰1) + 𝑑(𝑌2, 𝔰2). (3)

We may now define the invariants 𝑉
0
and 𝑉0.

Definition 2.4. Let 𝐾 be a knot in 𝑆3. The involutive concordance invariants of 𝐾 are

𝑉
0
(𝐾) ∶= −

1

2
𝑑(𝑆3

+1
(𝐾)), 𝑉0(𝐾) ∶= −

1

2
𝑑(𝑆3

+1
(𝐾)).

These invariants also admit a more general relationship to surgeries, which is an extension of
a formula for the noninvolutive d-invariant proved by Ni andWu [20]. The set of spinc-structures
on 𝑝∕𝑞-surgery on 𝐾 may be identified with ℤ∕𝑝ℤ; in this paper, we follow the convention used
by [25] and [20] for this identification. Ni and Wu show that, given 0 ⩽ 𝑠 ⩽ 𝑝 − 1

𝑑(𝑆3
𝑝∕𝑞

(𝐾), [𝑠]) = 𝑑(𝐿(𝑝, 𝑞), [𝑠]) − 2max

{
𝑉⌊

𝑠

𝑞

⌋(𝐾), 𝑉⌊
𝑝+𝑞−1−𝑠

𝑞

⌋(𝐾)
}
. (4)
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1598 HENDRICKS and MALLICK

Here 𝑉𝑖 represents the 𝑖th concordance invariant in the sequence defined in [25, 28], which
sequence generalizes 𝑉0. In [7], Hom, Stoffregen, and Zemke and the first author prove a surgery
formula in involutive Heegaard Floer homology, one of whose consequences is an involutive ana-
log of the relationship above, which we now recall. With respect to the convention above, the
conjugation action on spinc-structures is

𝐽([𝑖]) = [𝑝 + 𝑞 − 1 − 𝑖], where [𝑖] ∈ ℤ𝑝. (5)

In particular, if 𝑝 and 𝑞 are both odd, then [
𝑞−1

2
] ∈ ℤ𝑝 represents the unique self-conjugate

spinc-structure on the manifold 𝑆3
𝑝∕𝑞

(𝐾). When 𝑝 is even and 𝑞 is odd, there are two self-

conjugate spinc-structures on the manifold 𝑆3
𝑝∕𝑞

(𝐾), to wit [ 𝑞−1
2
] and [

𝑝+𝑞−1

2
]. Finally, when 𝑝

is odd and 𝑞 is even, there is a unique spinc-structure [ 𝑝+𝑞−1
2

]. With this in mind, we have the
following.

Theorem 2.5 [7, Proposition 1.7]. Suppose that 𝑞 is odd, then we have

𝑑

(
𝑆3
𝑝∕𝑞

(𝐾),

[
𝑞 − 1

2

])
= 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
− 2𝑉

0
(𝐾)

𝑑

(
𝑆3
𝑝∕𝑞

(𝐾),

[
𝑞 − 1

2

])
= 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
− 2𝑉0(𝐾).

If one of 𝑝 or 𝑞 is even, then

𝑑

(
𝑆3
𝑝∕𝑞

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
= 𝑑

(
𝑆3
𝑝∕𝑞

(𝐾),

[
𝑝 + 𝑞 − 1

2

])

𝑑

(
𝑆3
𝑝∕𝑞

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
= 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑝 + 𝑞 − 1

2

])
.

Note that the original version of the theorem is stated using a different indexing convention
for the spinc structures, which we have translated into the Ozsváth–Szabó convention here; for
more on this, see [7, pp. 204–205]. For the statement of the full surgery formula of which this
relationship is a consequence, see [7, sections 1.2 and 1.3].

3 PROOFS OF THEMAIN THEOREMS

3.1 A cabling formula for the involutive concordance invariants

In this subsection, we prove Theorems 1.1 and 1.4. A key ingredient of our proof will be the fol-
lowing classical diffeomorphism (see [19] for a first case and [4, Corollary 7.3] for the general
statement; a summary of the proof can be found in in [6, section 2.4]):

𝑆3𝑝𝑞(𝐾𝑝,𝑞) = 𝑆3
𝑞∕𝑝

(𝐾)#𝐿(𝑝, 𝑞).
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A NOTE ON CABLES AND THE INVOLUTIVE CONCORDANCE INVARIANTS 1599

Let us now denote the projections of a spinc-structure to the two summands 𝑆3
𝑞∕𝑝

(𝐾) and 𝐿(𝑝, 𝑞)
as 𝜋1 and 𝜋2, respectively. We may treat these as functions

𝜋1 ∶ ℤ𝑝𝑞 → ℤ𝑞, 𝜋2 ∶ ℤ𝑝𝑞 → ℤ𝑝.

We record the following lemma, which is a direct consequence of [29, Lemma 4.1].

Lemma 3.1. The self-conjugate spinc-structure [0] ∈ ℤ𝑝𝑞 projects to the summands as follows.

(1) If both 𝑝 and 𝑞 are odd, we have

𝜋1(0) ≡
𝑝 − 1

2
(mod 𝑞); 𝜋2(0) ≡

𝑞 − 1

2
(mod 𝑝).

(2) If 𝑝 is odd and 𝑞 is even,

𝜋1(0) ≡
𝑝 − 1

2
(mod 𝑞); 𝜋2(0) ≡

𝑝 + 𝑞 − 1

2
(mod 𝑝).

(3) If 𝑝 is even and 𝑞 is odd,

𝜋1(0) ≡
𝑝 + 𝑞 − 1

2
(mod 𝑞); 𝜋2(0) ≡

𝑞 − 1

2
(mod 𝑝).

Proof. In [29, Lemma 4.1], it was shown that the projections maps satisfy the following relations

𝜋1(0) ≡ −
(𝑝 − 1)(𝑞 − 1)

2
(mod 𝑞); 𝜋2(0) ≡ −

(𝑝 − 1)(𝑞 − 1)

2
(mod 𝑝).

The desired result now follows from a direct calculation. □

We may now prove Theorem 1.1.

Proof of Theorem 1.1. We break the proof into three cases, depending on the parity of 𝑝 and 𝑞.
Case 1.We first consider the case when 𝑝 and 𝑞 are both odd. We will give the proof for 𝑉

0
. The

proof for 𝑉0 is identical. As per Lemma 3.1, the projection of the [0] spinc structure on 𝑆3𝑝𝑞(𝐾) to
𝐿(𝑝, 𝑞) has image the unique self-conjugate spinc-structure, represented by

[
𝑞 − 1

2

]
(mod 𝑝).

Similarly, for 𝑞∕𝑝-Dehn surgery with 𝑞 odd, the projection of the [0] spinc structure on 𝑆3𝑝𝑞(𝐾) to
𝑆3
𝑞∕𝑝

(𝐾) has image the unique self-conjugate spinc-structure, namely,

[
𝑝 − 1

2

]
(mod 𝑞).

Now applying Lemma 3.1 and (1) to the case that both 𝑝 and 𝑞 are odd, we we see
that the iota-complex (𝐶𝐹−(𝑆3𝑝𝑞(𝐾𝑝,𝑞), [0]), 𝜄) is strongly equivalent to the iota-complex
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1600 HENDRICKS and MALLICK

(𝐶𝐹−(𝑆3
𝑞∕𝑝

(𝐾), [
𝑝−1

2
]), 𝜄) shifted in grading by 𝑑(𝐿(𝑝, 𝑞), [ 𝑞−1

2
]). It therefore follows that

𝑑(𝑆3𝑝𝑞(𝐾𝑝,𝑞), [0]) = 𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 − 1

2

])
+ 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
. (6)

Applying Theorem 2.5, we get that

𝑑(𝑆3𝑝𝑞(𝐾𝑝,𝑞), [0]) = 𝑑(𝐿(𝑝𝑞, 1), [0]) − 2𝑉
0
(𝐾𝑝,𝑞) (7)

and also that

𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 − 1

2

])
= 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 − 1

2

])
− 2𝑉

0
(𝐾). (8)

Combining Equations (7) and (8) with Equation (6), we get

𝑑(𝐿(𝑝𝑞, 1), [0]) − 2𝑉
0
(𝐾𝑝,𝑞) = 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 − 1

2

])
− 2𝑉

0
(𝐾) + 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
. (9)

Now by plugging in the unknot for 𝐾 in Equation 9, we get

𝑑(𝐿(𝑝𝑞, 1), [0]) − 2𝑉
0
(𝑇𝑝,𝑞) = 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 − 1

2

])
+ 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
. (10)

Substituting Equation (10) into Equation (9) and observing that𝑉
0
(𝑇𝑝,𝑞) = 𝑉0(𝑇𝑝,𝑞) [9, section 7]

we get the desired equality. The proof for 𝑉0 is similar.
Case 2. Let us now consider the case when 𝑝 is odd and 𝑞 is even. We first consider𝑉

0
. The two

self-conjugate spinc-structures on 𝑆3
𝑞∕𝑝

(𝐾) are given by

[
𝑝 − 1

2

]
(mod 𝑞) and

[
𝑝 + 𝑞 − 1

2

]
(mod 𝑞).

On the other hand, on 𝐿(𝑝, 𝑞) there is only one self-conjugate spinc structure, to wit
[
𝑝 + 𝑞 − 1

2

]
(mod 𝑝).

Now, in this case, Lemma 3.1 implies

𝑑(𝑆3𝑝𝑞(𝐾𝑝,𝑞), [0]) = 𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 − 1

2

])
+ 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑝 + 𝑞 − 1

2

])
. (11)

Again applying Theorem 2.5, we also have

𝑑(𝑆3𝑝𝑞(𝐾𝑝,𝑞), [0]) = 𝑑(𝐿(𝑝𝑞, 1), [0]) − 2𝑉
0
(𝐾𝑝,𝑞) (12)

and

𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 − 1

2

])
= 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 − 1

2

])
− 2𝑉

0
(𝐾). (13)

The rest of the proof is identical to that for the case when 𝑝 and 𝑞 are both odd. The proof for 𝑉0

is also similar.
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A NOTE ON CABLES AND THE INVOLUTIVE CONCORDANCE INVARIANTS 1601

Case 3.We are left to consider the case when 𝑝 is even. In this case by Lemma 3.1, we have

𝑑
(
CF−

(
𝑆3pq(𝐾𝑝,𝑞), [0]

))
= 𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
+ 𝑑

(
𝐿(𝑝, 𝑞),

[
𝑞 − 1

2

])
, (14)

and from Theorem 2.5 we still have

𝑑
(
CF−

(
𝑆3pq(𝐾𝑝,𝑞), [0]

))
= 𝑑(𝐿(pq, 1), [0]) − 2𝑉

0
(𝐾). (15)

However, in this case our second consequence of Theorem 2.5 is of the form

𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
= 𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
. (16)

Now let us choose 0 ⩽ 𝑠 ⩽ 𝑞 − 1 such that

𝑠 ≡
𝑝 + 𝑞 − 1

2
(mod 𝑞).

Applying the Ni–Wu formula (4), we get

𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
= 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 + 𝑞 − 1

2

])
− 2 max

{
𝑉⌊

𝑠
𝑝

⌋(𝐾), 𝑉⌊
𝑝+𝑞−1−𝑠

𝑝

⌋(𝐾)
}
.

(17)
Combining Equations (15), (14), (16), and (17) and following the similar steps as above gives us the
desired equality for 𝑉

0
.

As𝑉
0
and𝑉0 have significantly different expressions in this final case, we also comment briefly

on the argument for 𝑉0. The analog of Equation (16) is

𝑑

(
𝑆3
𝑞∕𝑝

(𝐾),

[
𝑝 + 𝑞 − 1

2

])
= 𝑑

(
𝐿(𝑞, 𝑝),

[
𝑝 + 𝑞 − 1

2

])
. (18)

Therefore, following similar steps as for the 𝑉
0
case, we get

𝑉0(𝐾𝑝,𝑞) = 𝑉0(𝑇𝑝.𝑞).

This completes the proof. □

The proof of Corollary 1.2 now follows.

Proof of Corollary 1.2. We may apply Theorem 1.1 recursively. □

3.2 Unknotting number bound

In this subsection, we produce a bound for the unknotting number, using Theorem 1.1.
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1602 HENDRICKS and MALLICK

F IGURE 1 The knot Floer chain complex of the knot 𝐾, up to local equivalence. The arrows are of length
three. The action of 𝜄 is shown in the right.

Proof of Theorem 1.4. In [15, Theorem 1.7], Juhász–Zemke proved a bound for the slice genus using
the involutive concordance invariants. Specifically, they showed

−

⌈
g4(𝐾) + 1

2

⌉
⩽ 𝑉0(𝐾) ⩽ 𝑉

0
(𝐾) ⩽

⌈
g4(𝐾) + 1

2

⌉
. (19)

Now observe that

g4(𝐾) ⩽ 𝑢(𝐾).

Hence, we immediately get the desired inequality by replacing 𝐾 with 𝐾𝑝,𝑞 and applying
Theorem 1.1 for 𝑝 odd. □

4 EXAMPLES

We now discuss an example for which our cabling formula improves on other bounds from knot
Floer homology.

Example 4.1. We consider the knot 𝐾 ∶= −2𝑇6,7#𝑇6,13. It was shown in [7, section 4] that the
knot Floer chain complex of 𝐾 splits into equivariant summands one of which is the tensor prod-
uct of 𝔽[𝑈,𝑈−1] with the complex 𝐶 in Figure 1 in such a way that 𝑉

0
(𝐾) and 𝑉0(𝐾) are equal to

the involutive concordance invariants of the complex in Figure 1 with the action of 𝜄 shown; in the
language of the literature, the two complexes are locally equivalent. Indeed, one may compute 𝑉

0

and 𝑉0 of the knot 𝐾 by computing 𝑑 and 𝑑 of a suitable subcomplex of 𝐶 ⊗ 𝔽[𝑈,𝑈−1]; for more
on this computation, see [9, section 6] and [7, Introduction].
In particular, computation shows that 𝑉

0
(𝐾) = 3. Now the unknotting number bound for 𝐾3,2

from Theorem 1.4 gives

𝑢(𝐾3,2) ⩾ 2𝑉
0
(𝐾) + 2 − 2 = 6

Note that slice genus, and hence unknotting number, bounds for 𝐾3,2 coming from the Ozsváth–
Szabó 𝜏-invariant, from the 𝑉0-invariant, and from the 𝜈+ invariant [29] are all 1. Finally, observe
that the unknotting number bound from [13] shows that 𝑢(𝐾3,2) ⩾ 3.
A similar argument applies to the general situation of the (𝑛, 2)-cables of the knots 𝐾𝑛 =

−2𝑇2𝑛,2𝑛+1#𝑇2𝑛,4𝑛+1 for 𝑛 odd considered in [8], which have chain complexes locally equivalent
to the analog of the complex in Figure 1 with length 𝑛 arrows in the box, and have 𝑉

0
(𝐾𝑛) = 𝑛.
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