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1 | INTRODUCTION

Cabling is a natural operation on a knot which acts on the smooth concordance group. There has
been considerable interest in characterizing the behavior of various knot concordance invariants
under cabling. Typically, one hopes to prove a formula which relates the values of some concor-
dance invariant of a cabled knot to the value of the invariant on the companion knot and the
value of the invariant on the pattern knot, in this case a torus knot. Some examples of invariants
which are known to admit such formulae include the Levine-Tristram signatures [16], the Hee-
gaard Floer r-invariant and e-invariant [5, 11, 27], Rasmussen’s V-invariant [14], and the Heegaard
Floer vt-invariant [29], among others.

Recently, concordance invariants stemming from the involutive variant of Heegaard Floer
homology defined by the first author and Manolescu [9] have been shown to be fruitful in many
applications. In this paper, we will be interested in the concordance invariants V, (K) and VO(K ),
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which can be thought of as the involutive analog of Rasmussen’s V,(K) invariant [9, subsection
6.7]. An early indication of the utility of these invariants was that the involutive concordance
invariants are able to detect nonsliceness of certain rationally slice knots. Later, equivariant refine-
ments of these invariants defined by the second author, Dai, and Stoffregen [3, 17] were used in to
show that (2,1)-cable of the figure-eight knot is not smoothly slice [2].

In this article, we give the cabling formula for the involutive concordance invariants. Let K, ,
denote the (p, g)-cable of a knot K, and V represent the generalization [20] of Rasmussen’s V-
invariant [28, Definition 7.1].

Theorem 1.1. Let p and q be positive integers with (p,q) = 1. Then the involutive concordance
invariants satisfy the following relations.

(1) If pisodd, we have

V(K

p.a) = VoK) + V(T ), Vo(Kpg) =Vo(K)+ V(T

P,q)'

(2) Ifpiseven,

Ko(Kp,q) = maX{ V{EJ (K)’ V{pﬂ]lsJ(K)} + V(](Tp,q)’ VO(Kp,q) = VO(Tp,q)v

p
where s = %q_l(mod g)and0<s<qg—1

Theorem 1.1 implies that the involutive concordance invariants are determined by the knot
Floer homology when the longitudinal winding parameter p is even. On the other hand, when
p is odd, the involutive concordance invariants incorporate the corresponding invariants for the
companion knot.

Theorem 1.1 implies the following corollary. Let K

P11 iPaaiPs s peq TEPTESENt the iterated
cable of the knot K. For example, K, is the (p,, g,)-cable of the (p;, q;)-cable of K.

1,:41:P2-92
Corollary 1.2. If the parameters p; are all odd and positive, and either V ,(K) or V,(K) is nonzero,
then K, 1.5 1:ps,15-:p,.,1 IS 1Ot smoothly slice.

Corollary 1.2 is related to a famous open question by Miyazaki [18, Question 3] which asks
whether there are nonslice knots K for which the cable knot K, ; is slice.

Remark 1.3. Tt is possible to produce examples of topologically (and therefore algebraically) slice
knots which are trivial with respect to ordinary Heegaard Floer homology and involutively non-
trivial, for which the corollary above detects nonsliceness of the cable; for example, one such
family appears in [12, Theorem 1.1]. The authors are, however, not presently aware of a family of
examples which are not better elucidated by other methods.

We now explain the strategy for the proof of Theorem 1.1. A direct approach would be to deter-
mine the full involutive knot Floer invariant of the cabled knot, which takes the form of the knot
Floer chain complex of Ozsvath-Szabé and Rasmussen CFK(K) together with the knot conjuga-
tion symmetry  on the complex. The involutive concordance invariants of the knot may then
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in principle be extracted from these data. However, it is challenging to compute the full knot
Floer chain complex for a general cabled knot, and additionally challenging to determine the
symmetry . In general, direct computations of ¢ have only been carried out for simple chain
complexes in which the map is determined by its algebraic properties, and for tensor products of
those complexes.

Instead, our proof takes an indirect approach, using certain consequences of the surgery for-
mula in involutive Heegaard Floer homology proved by Hom-Stoffregen-Zemke and the first
author [7] to deduce the formulae presented in Theorem 1.1. This approach is similar to one
used by Ni-Wu to compute the Heegaard Floer correction terms of three-manifolds using surgery
formulae [20].

1.1 | Applications to the unknotting number

We now discuss an application of Theorem 1.1 to the unknotting number. Recall that the unknot-
ting number u(K) of a knot X is the minimum number of times the knot must be passed through
itself to turn it into an unknot. There are many well-known bounds in the literature for the unknot-
ting number of a knot. In one recent example, in [1], Alishahi and Eftekhary gave a bound using
the torsion order of the HFK~ flavor of the knot Floer homology. This bound was later used
by Hom, Lidman, and Park [13] to give bounds for the unknotting number of cabled knots. In
particular, the authors showed that

u(Kp,q) > p.

It is also well-known that the unknotting number is greater than or equal to the slice genus of the
knot. Hence using the relationship of Rasmussen’s V|, invariant to the slice genus [28], together
with the cabling formula for the V|,-invariant [14], one can also write down the bounds

u(K, 4) > 2V (K) +2V(T if g,(K, ) is even

p’q)ﬁ

and

uK, g) 2 2Vo(K) + 2V (T 1, if g,(K,, ) is odd.

p,q) -

In particular, without knowing the slice genus of the knot, we have that

u(K, ) = 2Vo(K) +2Vo(T, ) — 1.

p

Using Theorem 1.1, we improve the above bounds:

Theorem 1.4. Let K, , be a cabled knot with p odd. Then

u(K, ) > 2V, (K) +2Vo(T

b)) —2andu(K, ) > =2V (K) = 2V((T, ;) — 2.

More precisely, one has

D) u(K,,) > 2V, (K) +2Vo(T, ) — 1 and u(K

p.q) = —2Vo(K) =2V (T

p,q) - 1’ g4(Kp,q) Odd,

p-q) -
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(2) u(Kp,q) > 2V, (K) + 2V (T 2 and u(Kp,q) > —2170(K) =2V (T 2, g4(Kp,q) even

pg) = pg) =
although of course one in general one would like to apply Theorem 1.4 in situations where the

slice genus is unknown.

Remark 1.5. A statement similar to Theorem 1.4 could also be made for the 4-dimensional posi-
tive clasp number of a knot in place of the unknotting number. In another direction, because V|
and 70 are concordance invariants, the bound from Theorem 1.4 is in fact a bound on the concor-
dance unknotting number of K, ., which is to say the minimum unknotting number of a knot J
concordant to K, ..

In Example 4.1, we show that there are infinitely many knots for which the bound from
Theorem 1.4 is stronger than that from [13] or the aforementioned bound from the V-invariant.

1.2 | Organization

This paper is organized as follows. In Section 2, we review the definition of the involutive con-
cordance invariants and structural features of the involutive surgery formula. We then prove
Theorem 1.1, Corollary 1.2, and Theorem 1.4 in Section 3. Finally, in Section 4 we consider an
example in which our formula improves on other bounds from knot Floer homology.

2 | BACKGROUND ON INVOLUTIVE HEEGAARD FLOER
HOMOLOGY

In this section, we briefly recall the definition of the involutive knot concordance invariants of
a knot and the involutive correction terms of a three-manifold from [9] and their relationship to
surgeries on the knot [7]. We begin by recalling the algebraic setup.

Definition 2.1. An iota-complex is a pair (C, t) of the following form.

» C is an absolutely Q-graded and relatively Z-graded finitely-generated chain complex over
F,[U] with the property that U"'H,(C) ~ F,[U, U~!] with some grading shift.
* 1is a grading-preserving chain map such that ¢? is chain homotopic to the identity.

To a rational homology sphere Y together with a spin® structure  on Y, Ozsvath and Szabo’s
Heegaard Floer homology associates a chain complex CF~(Y, 8) [22, 23]; if 8 is conjugation-
invariant, involutive Floer homology appends to these data a chain map t. The pair (CF (Y, 8), 1)
is an iota-complex in the sense of Definition 2.1.

The involutive Heegaard Floer invariants satisfy a tidy connected sum formula, as follows.

CE™ (Y #Y,,8,#8,,0) ~ (CF (Y1,8)) ® CF(Y,,3,),,4 ® 1) )

That is, the two complexes are chain homotopy equivalent via maps which commute up to homo-
topy with the involutions in their pairs. This relationship is sometimes called a strong equivalence.
The statement for the chain complexes is due to [22, section 6] and the statement for the involution
is due to [10, Theorem 1.1].
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In ordinary Heegaard Floer homology, the d-invariant of a chain complex C satisfying the crite-
rion above is the maximum grading of an element a in C such that [U"a] # 0 for all positive n, and
the d-invariant or correction term of (Y, 8) is d(CF~(Y, 8)) [21]. From this, one may extract Ras-
mussen’s concordance invariant V;, as V,(K) = —%d(CF _(Sfrl(K)) [24, 26, 28]. The d-invariant is
additive under connected sum; that is,

d((Y1#Y,),8,#8,) = d(Y1,8)) + d(Y,, 8,). 2

An important special case is that of the lens space L(p, q). The iota-complex associated to L(p, q)
in any spin® structure 8 is a copy of the pair (F,[U], Id), with the grading of the element 1in F,[U]
being d(L(p, q), 3). Therefore, taking the connected sum with a lens space has the sole effect of
imposing a grading shift on (CF~(Y), 3).

We may now define the involutive variants of the d-invariant. We follow [10, Lemma 2.12],
which is a reformulation of the original definitions from [9].

Definition 2.2. Let (C, ) be an iota-complex. Then d(C, t) is the maximum grading of a homoge-
neous cycle a € C such that [U"a] # 0 for all positive n and furthermore there exists an element
b such that 0b = (id + t)a.

Definition 2.3. Let (C,t) be an iota-complex. Consider triples (x, y, z) consisting of elements of
C, with at least one of x or y nonzero such that dy = (id + ¢)x, dz = U™x, for some m > 0 and
[U(U™y + (id + 1)z)] # 0 for all n > 0. If x # 0, assign this triple the value gr(x) + 1; if x =0,
assign this triple the value gr(y). Then d(C,t) is defined as the maximum of these grading values
across all valid triples (x, y, z).

Given a three-manifold Y with conjugation-invariant spin®-structure 8, we say that d(Y, 8) =
d(CF~ (Y, 8)) and likewise d(Y, 8) = d(CF~ (Y, 8)). The invariants d and d are not additive under
connected sum, but instead, for 8 = 3, #3,, satisfy the following [10, Proposition 1.3]:

d(Y,8)) +d(Y,,8,) <d(Y #Y,,8) <d(Y,8)) +d(Y,,8,) <d(Y,#Y,,8)
< d_(Yl’ Q’l) + d_(YZ’ §2) (3)

We may now define the invariants V and V.

Definition 2.4. Let K be a knot in S3. The involutive concordance invariants of K are

VoK) 1= =3d6HK), VoK) i= =3d(S3,(K)).

These invariants also admit a more general relationship to surgeries, which is an extension of
a formula for the noninvolutive d-invariant proved by Ni and Wu [20]. The set of spin®-structures
on p/g-surgery on K may be identified with Z/pZ; in this paper, we follow the convention used
by [25] and [20] for this identification. Ni and Wu show that, given0 < s < p —1

d(S2 (KD, 1) = d(L(p, . s — zmax{vl [LORZPTES } @

s
q q
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Here V; represents the ith concordance invariant in the sequence defined in [25, 28], which

sequence generalizes V,. In [7], Hom, Stoffregen, and Zemke and the first author prove a surgery
formula in involutive Heegaard Floer homology, one of whose consequences is an involutive ana-
log of the relationship above, which we now recall. With respect to the convention above, the
conjugation action on spin®-structures is

J([il) =[p +q—1-i], where[i] € Z,. (5)

In particular, if p and g are both odd, then [qT_l] € Z, represents the unique self-conjugate
spin®-structure on the manifold S3 (K). When p is even and q is odd, there are two self-

conjugate spin®-structures on the manlfold S3 (K) to wit [q 1] and [E9— +q 1] Finally, when p

is odd and q is even, there is a unique spin® structure [ +g ! ]. With this in mind, we have the
following.

Theorem 2.5 [7, Proposition 1.7]. Suppose that q is odd, then we have

< SpraK [ D - d(“"’ 2. [qT_l]) 2V, (K)
(53,0 [ ]) - d(Lp.0) [QT‘ID T,

Ifone of p or q is even, then

0 P w0257
(s P2 i 247

Note that the original version of the theorem is stated using a different indexing convention
for the spin® structures, which we have translated into the Ozsvath-Szabé convention here; for
more on this, see [7, pp. 204-205]. For the statement of the full surgery formula of which this
relationship is a consequence, see [7, sections 1.2 and 1.3].

3 | PROOFS OF THE MAIN THEOREMS
3.1 | A cabling formula for the involutive concordance invariants
In this subsection, we prove Theorems 1.1 and 1.4. A key ingredient of our proof will be the fol-

lowing classical diffeomorphism (see [19] for a first case and [4, Corollary 7.3] for the general
statement; a summary of the proof can be found in in [6, section 2.4]):

Soa&pg) =5, (KI#L(p.q)-
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Let us now denote the projections of a spin®-structure to the two summands S; /p(K) and L(p, q)
as r; and 7,, respectively. We may treat these as functions

We record the following lemma, which is a direct consequence of [29, Lemma 4.1].

Lemma 3.1. The self-conjugate spin®-structure [0] € Z pq Projects to the summands as follows.

(1) Ifboth p and q are odd, we have

m,(0) = pTl (mod q); m,(0) = qT—l (mod p).

(2) If pisodd and q is even,

- pt+qg-—1

m©0 =222 (mod gy 7,0 = EEIE (mod p).

(3) Ifpisevenand q is odd,

p+q-1

7,(0) = (mod q); 7,(0) = qT_l (mod p).

Proof. In [29, Lemma 4.1], it was shown that the projections maps satisfy the following relations

(p—1)(g—1) (p—1)(q—-1)
m(0) = —% (mod q); m,(0) = —% (mod p).
The desired result now follows from a direct calculation. O

We may now prove Theorem 1.1.

Proof of Theorem 1.1. We break the proof into three cases, depending on the parity of p and q.
Case 1. We first consider the case when p and q are both odd. We will give the proof for V.. The

proof for 70 is identical. As per Lemma 3.1, the projection of the [0] spin® structure on 5139 q(K ) to
L(p, g) has image the unique self-conjugate spin®-structure, represented by

[qT_l] (mod p).

Similarly, for g/ p-Dehn surgery with g odd, the projection of the [0] spin® structure on S g q(K) to
S; /p(K) has image the unique self-conjugate spin®-structure, namely,

[pT—l] (mod q).

Now applying Lemma 3.1 and (1) to the case that both p and g are odd, we we see
that the iota-complex (CF‘(qu(Kp’q), [0]),1) is strongly equivalent to the iota-complex
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(CF~ (SZ /p (K), [pT_l]), ¢) shifted in grading by d(L(p, q), [q—;l]). It therefore follows that

53,y 0D = (53,60, | B | ) o (1w |25 ). ©
Applying Theorem 2.5, we get that
d(s; (K o), [0]) = d(L(pg, 1), [0]) — 2V (K, o) (7
and also that
g(sg (K. [pT”D - d(L(q,p), [pT”D — 2, (K). ®

Combining Equations (7) and (8) with Equation (6), we get

AW 010D -2, = d(1ta ) [P ) - 220 + a1, |25 ). @

Now by plugging in the unknot for K in Equation 9, we get

4o 010D - 20, (T, = d (1600 || ) (1 [152]). a0

Substituting Equation (10) into Equation (9) and observing that V' (T, ;) = V(T , ;) [9, section 7]
we get the desired equality. The proof for 70 is similar.

Case 2. Let us now consider the case when p is odd and q is even. We first consider V,. The two
self-conjugate spin°®-structures on S; /p (K) are given by

-1 +q-1
[pT] (mod q) and [%] (mod g).
On the other hand, on L(p, q) there is only one self-conjugate spin® structure, to wit

[%q—l] (mod p).

Now, in this case, Lemma 3.1 implies

53, Ko 0D = (53,60, | B | ) (L) |PHZE])
Again applying Theorem 2.5, we also have
d(S3 (K, 0), [0]) = d(L(pg, 1), [0]) = 2V, (K , ;) (12)
and
g(s; (K. [pT”D - d(L(q,p), [pT”D — 2, (K). 13)

The rest of the proof is identical to that for the case when p and q are both odd. The proof for 170
is also similar.
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Case 3. We are left to consider the case when p is even. In this case by Lemma 3.1, we have

d (CF (83K, o). [01)) = (s; 1), [%‘HD +d (L(p,q>, [qT”D S

and from Theorem 2.5 we still have
d (CF™ (83, (Kpq).[01) ) = d(L(pg. 1. [0]) = 2V, (K). (1s)

However, in this case our second consequence of Theorem 2.5 is of the form

s(su|757) el [57])

Now let us choose 0 < s < g — 1 such that

ptg-1
2

s (mod q).

Applying the Ni-Wu formula (4), we get

(5,00, (257 ) = a(atam |25 ) -2 mae{ v 07 e 0}
a7)
Combining Equations (15), (14), (16), and (17) and following the similar steps as above gives us the
desired equality for V.
AsV, and V, have significantly different expressions in this final case, we also comment briefly
on the argument for V. The analog of Equation (16) is

(o [P o ) s

Therefore, following similar steps as for the V, case, we get

VoK, g) = Vo(T),)-
This completes the proof. O
The proof of Corollary 1.2 now follows.
Proof of Corollary 1.2. We may apply Theorem 1.1 recursively. O

3.2 | Unknotting number bound

In this subsection, we produce a bound for the unknotting number, using Theorem 1.1.
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b a

g (z) =z +
J J t(a) =a+
d g (b) =c¢
(c)
(

°C
° LK
xT

FIGURE 1 The knot Floer chain complex of the knot K, up to local equivalence. The arrows are of length
three. The action of ¢ is shown in the right.

Proof of Theorem 1.4. In [15, Theorem 1.7], Juhdsz—-Zemke proved a bound for the slice genus using
the involutive concordance invariants. Specifically, they showed

19)

2

_ [94(K) + 1]
2

VoK) <V (K) < [M] .

Now observe that
94(K) < u(K).

Hence, we immediately get the desired inequality by replacing K with K, , and applying
Theorem 1.1 for p odd. ]

4 | EXAMPLES

We now discuss an example for which our cabling formula improves on other bounds from knot
Floer homology.

Example 4.1. We consider the knot K := —2T ,#T ;3. It was shown in [7, section 4] that the
knot Floer chain complex of K splits into equivariant summands one of which is the tensor prod-
uct of F[U, U~!] with the complex C in Figure 1 in such a way that V,(K) and 170(K) are equal to
the involutive concordance invariants of the complex in Figure 1 with the action of : shown; in the
language of the literature, the two complexes are locally equivalent. Indeed, one may compute V.
and V, of the knot K by computing d and d of a suitable subcomplex of C ® F[U, U~']; for more
on this computation, see [9, section 6] and [7, Introduction].

In particular, computation shows that V (K) = 3. Now the unknotting number bound for K ,
from Theorem 1.4 gives

u(K;,) > 2V (K)+2-2=6

Note that slice genus, and hence unknotting number, bounds for K;, coming from the Ozsvath-
Szabo t-invariant, from the V-invariant, and from the »* invariant [29] are all 1. Finally, observe
that the unknotting number bound from [13] shows that u(K; ,) > 3.

A similar argument applies to the general situation of the (n,2)-cables of the knots K, =
—2T 5, 2n+1#T 2 4n+1 for n odd considered in [8], which have chain complexes locally equivalent
to the analog of the complex in Figure 1 with length n arrows in the box, and have V (K,,) = n.
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