Math 549: Suggested Exercises for Lectures 18 and 19

Bump Chapter 12, Kirillov Sections 4.8-9

- 1. Let $V_k = S^k \mathbb{C}^2$ be the representation of $\mathfrak{sl}(2, \mathbb{C})$ constructed in class.
 - (a) Show that V_2 is isomorphic to the adjoint representation of $\mathfrak{sl}(2,\mathbb{C})$.
 - (b) Which of the representations V_k lift to representations of $SO(3, \mathbb{R})$?
- 2. Show that $\Lambda^n \mathbb{C}^n \simeq \mathbb{C}$ as a representation of $\mathfrak{sl}(n,\mathbb{C})$. Does this also work for $\mathfrak{gl}(n,\mathbb{C})$.
- 3. If (ρ, V) is a representation of $SL(2, \mathbb{R})$, SU(2) or $SL(2, \mathbb{C})$, we can restrict the character function of ρ to the diagonal subgroup, obtaining a Laurent polynomial

$$\xi_{\rho} = \operatorname{tr} \rho \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}.$$

- (a) Compute $\xi_{\rho}(t)$ for the symmetric power representations. Show that the resulting polynomials are independent and determine the representation ρ .
- (b) Show that $\xi_{\rho \otimes \rho'} = \xi_{\rho} \xi \rho'$. Use this to determine the decomposition of products of the symmetric power representations into irreducibles.
- 4. Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$, and let $C \in \operatorname{End}(V)$ such that C(v) is

$$EFv + FEv + \frac{1}{2}H^2v.$$

- (a) Show that C commutes with the action of $\mathfrak{sl}(2,\mathbb{C})$, that is, show that for $x \in \mathfrak{sl}(2,\mathbb{C})$, then $[\rho(x), C] = 0$. (Hint: Jacobi Identity.)
- (b) Show that if $V = V_k$ is the irreducible representation with highest weight k, then $C = c_k \text{Id}$. Compute the constant c_k .
- (c) Show that the isomorphism $\mathfrak{so}(3,\mathbb{C}) \simeq \mathfrak{sl}(2,\mathbb{C})$ identifies C with a multiple of $\rho(J_x)^2 + \rho(J_y)^2 + \rho(J_z)^2$.

This is a special case of the *Casimir element*, which we'll discuss more shortly.

5. Complete the computation from lecture (or Kirillov Section 4.9) to find the eigenvalues and multiplicities of the operator

$$H = -\Delta - \frac{c}{r}, \qquad \qquad c > 0$$

in $L^2(\mathbb{R}^3, \mathbb{C})$.