Math 549: Suggested Exercises for Lectures 18 and 19

Bump Chapter 12, Kirillov Sections 4.8-9

1. Let $V_{k}=S^{k} \mathbb{C}^{2}$ be the representation of $\mathfrak{s l}(2, \mathbb{C})$ constructed in class.
(a) Show that V_{2} is isomorphic to the adjoint representation of $\mathfrak{s l}(2, \mathbb{C})$.
(b) Which of the representations V_{k} lift to representations of $S O(3, \mathbb{R}$?
2. Show that $\Lambda^{n} \mathbb{C}^{n} \simeq \mathbb{C}$ as a representation of $\mathfrak{s l}(n, \mathbb{C})$. Does this also work for $\mathfrak{g l}(n, \mathbb{C})$.
3. If (ρ, V) is a representation of $S L(2, \mathbb{R}), S U(2)$ or $S L(2, \mathbb{C})$, we can restrict the character function of ρ to the diagonal subgroup, obtaining a Laurent polynomial

$$
\xi_{\rho}=\operatorname{tr} \rho\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)
$$

(a) Compute $\xi_{\rho}(t)$ for the symmetric power representations. Show that the resulting polynomials are independent and determine the representation ρ.
(b) Show that $\xi_{\rho \otimes \rho^{\prime}}=\xi_{\rho} \xi \rho^{\prime}$. Use this to determine the decomposition of products of the symmetric power representations into irreducibles.
4. Let V be a representation of $\mathfrak{s l}(2, \mathbb{C})$, and let $C \in \operatorname{End}(V)$ such that $C(v)$ is

$$
E F v+F E v+\frac{1}{2} H^{2} v .
$$

(a) Show that C commutes with the action of $\mathfrak{s l}(2, \mathbb{C})$, that is, show that for $x \in \mathfrak{s l}(2, \mathbb{C})$, then $[\rho(x), C]=0$. (Hint: Jacobi Identity.)
(b) Show that if $V=V_{k}$ is the irreducible representation with highest weight k, then $C=c_{k} \mathrm{Id}$. Compute the constant c_{k}.
(c) Show that the isomorphism $\mathfrak{s o}(3, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C})$ identifies C with a multiple of $\rho\left(J_{x}\right)^{2}+$ $\rho\left(J_{y}\right)^{2}+\rho\left(J_{z}\right)^{2}$.

This is a special case of the Casimir element, which we'll discuss more shortly.
5. Complete the computation from lecture (or Kirillov Section 4.9) to find the eigenvalues and multiplicities of the operator

$$
H=-\Delta-\frac{c}{r}, \quad c>0
$$

in $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}\right)$.

