Math 549: Suggested Exercises for Lectures 12 and 13

Kirillov Sections 3.6, 3.9, 4.1-4, Bump Chapters 1 and 2

- 1. Let SO(p,q) be the special indefinite orthogonal group, that is, the set of transformations preserving a nondegenerate symmetric bilinear form of signature (p,q). Prove that the complexification of $\mathfrak{so}(p,q)$ is $\mathfrak{so}(p+q)$.
- 2. Let G be a complex connected simply-connected Lie group, with Lie algebra \mathfrak{g} , and let $\mathfrak{k} \subset \mathfrak{g}$ be a real form of \mathfrak{g} .
 - (a) Define the \mathbb{R} -linear map $\Theta : \mathfrak{g} \to \mathfrak{g}$ by $\Theta(x + iy) = x iy, x, y \in \mathfrak{k}$. Show that Θ is an automorphism of \mathfrak{g} (considered as a real Lie algebra) which can be lifted uniquely to an automorphism $\Theta : G \to G$ (considered as a real Lie group.
 - (b) Let $K = G^{\Theta}$ be the fixed set of Θ . Show that K is a real Lie group with Lie algebra \mathfrak{k} .
- 3. (a) Let V and W be irreducible representations of a Lie group G. Show that $(V \otimes W^*)^G = 0$ if V is not isomorphic to W, and that $(V \otimes V^*)^G$ is canonically isomorphic to \mathbb{C} .
 - (b) Let V be an irreducible representation of a Lie algebra \mathfrak{g} . Show that V^* is also irreducible, and deduce from this that the space of \mathfrak{g} -invariant bilinear forms on V has dimension zero or one.
- 4. Let G be a complex connected Lie group (that is, a Lie group with the structure of a complex manifold such that multiplication and inversion are analytic maps).
 - (a) Show that $g \mapsto \operatorname{Ad}_q$ is an analytic map $G \to \mathfrak{gl}(\mathfrak{g})$.
 - (b) Assume that G is compact. Show that $\operatorname{Ad}_q = \operatorname{Id}$ for any $g \in G$.
 - (c) Prove that a connected compact complex Lie group is always commutative.
- 5. Let \mathfrak{g} be a Lie algebra and (,) a symmetric bilinear form on \mathfrak{d} which is invariant under ad. Show that the element $\omega \in ((g)^*)^{\otimes 3}$ given by

$$\omega(x, y, z) = ([x, y], z)$$

is skew-symmetric and ad-invariant.

6. Let
$$G = SU(2) \simeq S^3$$
.

(a) Let ω be a left-invariant 3-form whose value at Id $\in G$ is defined by

$$\omega(x_1, x_2, x_3) = \operatorname{tr}([x_1, x_2]x_3)$$

for $x_i \in \mathfrak{g}$. Show that ω is $\pm 4dV$ where dV is the standard volume form on S^3 . (Hint: Let x_1, x_2, x_3 be some basis in $\mathfrak{su}(2)$ orthonormal with respect to $\frac{1}{2}(a\overline{b}^t)$).

(b) Show that $\omega' = \left(\frac{1}{8\pi^2}\right) \omega$ is a bi-invariant form on G such that for appropriate choice of orientation on G, we have $\int_G \omega' = 1$.