Math 549: Suggested Exercises for Lectures 12 and 13

Kirillov Sections 3.6, 3.9, 4.1-4, Bump Chapters 1 and 2

1. Let $S O(p, q)$ be the special indefinite orthogonal group, that is, the set of transformations preserving a nondegenerate symmetric bilinear form of signature (p, q). Prove that the complexification of $\mathfrak{s o}(p, q)$ is $\mathfrak{s o}(p+q)$.
2. Let G be a complex connected simply-connected Lie group, with Lie algebra \mathfrak{g}, and let $\mathfrak{k} \subset \mathfrak{g}$ be a real form of \mathfrak{g}.
(a) Define the \mathbb{R}-linear map $\Theta: \mathfrak{g} \rightarrow \mathfrak{g}$ by $\Theta(x+i y)=x-i y, x, y \in \mathfrak{k}$. Show that Θ is an automorphism of \mathfrak{g} (considered as a real Lie algebra) which can be lifted uniquely to an automorphism $\Theta: G \rightarrow G$ (considered as a real Lie group.
(b) Let $K=G^{\Theta}$ be the fixed set of Θ. Show that K is a real Lie group with Lie algebra \mathfrak{k}.
3. (a) Let V and W be irreducible representations of a Lie group G. Show that $\left(V \otimes W^{*}\right)^{G}=$ 0 if V is not isomorphic to W, and that $\left(V \otimes V^{*}\right)^{G}$ is canonically isomorphic to \mathbb{C}.
(b) Let V be an irreducible representation of a Lie algebra \mathfrak{g}. Show that V^{*} is also irreducible, and deduce from this that the space of \mathfrak{g}-invariant bilinear forms on V has dimension zero or one.
4. Let G be a complex connected Lie group (that is, a Lie group with the structure of a complex manifold such that multiplication and inversion are analytic maps).
(a) Show that $g \mapsto \operatorname{Ad}_{g}$ is an analytic map $G \rightarrow \mathfrak{g l}(\mathfrak{g})$.
(b) Assume that G is compact. Show that $\operatorname{Ad}_{g}=\operatorname{Id}$ for any $g \in G$.
(c) Prove that a connected compact complex Lie group is always commutative.
5. Let \mathfrak{g} be a Lie algebra and (,) a symmetric bilinear form on $ð$ which is invariant under ad. Show that the element $\omega \in\left((g)^{*}\right)^{\otimes 3}$ given by

$$
\omega(x, y, z)=([x, y], z)
$$

is skew-symmetric and ad-invariant.
6. Let $G=S U(2) \simeq S^{3}$.
(a) Let ω be a left-invariant 3 -form whose value at $\operatorname{Id} \in G$ is defined by

$$
\omega\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{tr}\left(\left[x_{1}, x_{2}\right] x_{3}\right)
$$

for $x_{i} \in \mathfrak{g}$. Show that ω is $\pm 4 d V$ where $d V$ is the standard volume form on S^{3}. (Hint: Let x_{1}, x_{2}, x_{3} be some basis in $\mathfrak{s u}(2)$ orthonormal with respect to $\left.\frac{1}{2}\left(a \bar{b}^{t}\right)\right)$.
(b) Show that $\omega^{\prime}=\left(\frac{1}{8 \pi^{2}}\right) \omega$ is a bi-invariant form on G such that for appropriate choice of orientation on G, we have $\int_{G} \omega^{\prime}=1$.

