Math 549: Suggested Exercises for Lectures 8 and 9

References: Lee Chapter 7, Kirillov Sections 2.4-5, 3.1-3, Bump Chapters 6-7, 13.

- 1. Show there is an embedding $\mathbb{Z}/n\mathbb{Z} \subset SU(n) \times U(1)$ such that $(SU(n) \times U(1))/\mathbb{Z}/n\mathbb{Z} \simeq U(n)$.
- 2. Let $\operatorname{Fl}_k(\mathbb{C}^n)$ be the set of k-flags in \mathbb{C}^n , that is, ordered k-tuples of mutually orthogonal one-dimensional complex subspaces of \mathbb{C}^n . Show that U(n) acts transitively on $\operatorname{Fl}_k(\mathbb{C}^n)$ and determine the stabilizer of $(\langle e_1 \rangle, \langle e_2 \rangle, \ldots, \langle e_k \rangle)$. With what homogeneous space can $\operatorname{Fl}_k(\mathbb{C}^n)$ be identified? What is its dimension? Show that $\operatorname{Fl}_k(\mathbb{C}^n)$ admits a smooth surjection to $\operatorname{Gr}_k(\mathbb{C}^n)$. What are the fibres of this map?
- 3. Show that there are exactly two 2-dimensional Lie algebras up to isomorphism. Describe each of them as a subspace of $\mathfrak{gl}(2,\mathbb{R})$.
- 4. Let G be a Lie group.
 - (a) Compute the derivative at (e, e) of the multiplication $m: G \times G \to G$.
 - (b) Compute the derivative at e of inversion $i: G \to G$.
 - (c) Show that G is abelian if and only if i is a homomorphism. (Hint: This is easy.)
 - (d) Show that if G is abelian, then its Lie algebra \mathfrak{g} has trivial bracket.
 - (e) Give a counterexample to the converse of (d).
- 5. If H is a Lie group and $f: G \to H$ is a connected covering space (so that G is also a Lie group), prove that the induced map $f_*: \mathfrak{g} \to \mathfrak{h}$ is an isomorphism of Lie algebras.
- 6. Prove that a normal discrete subgroup of a Lie group is always central. Use this to give an alternate proof that the fundamental group of a connected Lie group is abelian.
- 7. (Bump functions, for those who haven't seen them before) Check that:
 - (a) The following function $f : \mathbb{R} \to R$ is smooth:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & x > 0\\ 0 & x \le 0 \end{cases}$$

- (b) There exists a smooth function $g : \mathbb{R} \to \mathbb{R}$ such that g(x) > 0 if $x \in (-1, 1)$ but g(x) = 0 otherwise.
- (c) There exists a smooth function $h : \mathbb{R} \to [0, 1]$ such that h(x) = 0 if $x \le 0$ but h(x) = 1 if $x \ge 1$.
- (d) For any $\epsilon > 0$, there exists a smooth $\psi : \mathbb{R}^n \to [0,1]$ such that $\phi(x) = 0$ if $|x| \ge 2\epsilon$ but $\phi(x) = 1$ if $|x| \le \epsilon$.
- (e) If M is a smooth manifold, $p \in U$ open in M, there exists a smooth $\phi : M \to \mathbb{R}$ such that $\phi(x) = 0$ if $x \notin U$ but $\phi(x) = 1$ on some neighborhood V of p.