Math 549: Suggested Exercises for Lectures 8 and 9

References: Lee Chapter 7, Kirillov Sections 2.4-5, 3.1-3, Bump Chapters 6-7, 13.

1. Show there is an embedding $\mathbb{Z} / n \mathbb{Z} \subset S U(n) \times U(1)$ such that $(S U(n) \times U(1)) / \mathbb{Z} / n \mathbb{Z} \simeq$ $U(n)$.
2. Let $\mathrm{Fl}_{k}\left(\mathbb{C}^{n}\right)$ be the set of k-flags in \mathbb{C}^{n}, that is, ordered k-tuples of mutually orthogonal one-dimensional complex subspaces of \mathbb{C}^{n}. Show that $U(n)$ acts transitively on $\mathrm{Fl}_{k}\left(\mathbb{C}^{n}\right)$ and determine the stabilizer of $\left(\left\langle e_{1}\right\rangle,\left\langle e_{2}\right\rangle, \ldots,\left\langle e_{k}\right\rangle\right)$. With what homogeneous space can $\mathrm{Fl}_{k}\left(\mathbb{C}^{n}\right)$ be identified? What is its dimension? Show that $\mathrm{Fl}_{k}\left(\mathbb{C}^{n}\right)$ admits a smooth surjection to $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$. What are the fibres of this map?
3. Show that there are exactly two 2-dimensional Lie algebras up to isomorphism. Describe each of them as a subspace of $\mathfrak{g l}(2, \mathbb{R})$.
4. Let G be a Lie group.
(a) Compute the derivative at (e, e) of the multiplication $m: G \times G \rightarrow G$.
(b) Compute the derivative at e of inversion $i: G \rightarrow G$.
(c) Show that G is abelian if and only if i is a homomorphism. (Hint: This is easy.)
(d) Show that if G is abelian, then its Lie algebra \mathfrak{g} has trivial bracket.
(e) Give a counterexample to the converse of (d).
5. If H is a Lie group and $f: G \rightarrow H$ is a connected covering space (so that G is also a Lie group), prove that the induced map $f_{*}: \mathfrak{g} \rightarrow \mathfrak{h}$ is an isomorphism of Lie algebras.
6. Prove that a normal discrete subgroup of a Lie group is always central. Use this to give an alternate proof that the fundamental group of a connected Lie group is abelian.
7. (Bump functions, for those who haven't seen them before) Check that:
(a) The following function $f: \mathbb{R} \rightarrow R$ is smooth:

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

(b) There exists a smooth function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x)>0$ if $x \in(-1,1)$ but $g(x)=0$ otherwise.
(c) There exists a smooth function $h: \mathbb{R} \rightarrow[0,1]$ such that $h(x)=0$ if $x \leq 0$ but $h(x)=1$ if $x \geq 1$.
(d) For any $\epsilon>0$, there exists a smooth $\psi: \mathbb{R}^{n} \rightarrow[0,1]$ such that $\phi(x)=0$ if $|x| \geq 2 \epsilon$ but $\phi(x)=1$ if $|x| \leq \epsilon$.
(e) If M is a smooth manifold, $p \in U$ open in M, there exists a smooth $\phi: M \rightarrow \mathbb{R}$ such that $\phi(x)=0$ if $x \notin U$ but $\phi(x)=1$ on some neighborhood V of p .

