Ref Bump Chapter 17

- G a compact Lie group, T a maximal torus.

- Last time T meets every conjugacy class, so it should be possible to integrate a class function over G w/ reference only to T.

To understand this we want the Riesz representation theorem from measure theory: Let X be a locally compact Hausdorff space and $C_c(X)$ the set of cts compactly supported functions on X. A linear functional I on $C_c(X)$ is called positive if $I(f) \geq 0$ for every nonnegative f.

Then each such I is of the form $I(f) = \int_X f \, d\mu$ for some regular Borel measure μ.

With this in mind...

Prop. Let G be a locally compact group, and H a compact subgroup. Let dG and dH be left Haar measures on G and H.

Then if a regular Borel measure dG/H on G/H is invariant under the action of G by left translation. The measure dG/H may be normalized such that, for $f \in C_c(G)$, we have

$$\int_{G/H} \int_H f(gh) \, d\mu_H(h) \, d\mu_G(\gamma H)$$

is constant on cosets gH, hence identified w/ a function on G/H.
We can choose δ_H so H has total volume 1. We define a map $A: \mathcal{C}_c(G) \to \mathcal{C}_c(G/H)$ via $(AF)(g) = \int_H f(gh) \, d\mu_H(h)$. Here we regard A as a function on G/H since it is invariant under right-translation by elements of H. Since H is compact, $A F$ is automatically compactly supported. Moreover, if $\phi \in \mathcal{C}_c(G/H)$, then treating ϕ as a function on G, we have $A F = \phi$ since

$$
A F(g) = \int_H f(gh) \, d\mu_H(h) = \int_H \phi(g) \, d\mu_H(h) = \phi(g)
$$

is not on cosets.

So A is surjective. Define a linear functional \mathcal{L} on $\mathcal{C}_c(G/H)$ via $\mathcal{L}(AF) = \int_G F(g) \, d\mu_G(g)$ for $F \in \mathcal{C}_c(G)$. We need to check this is well-defined, i.e. that if $AF = 0$ then $\int_G F(g) \, d\mu_G(g) = 0$.

To see this, note that the function $(g, h) \mapsto f(gh)$ is compactly supported and acts on $G \times H$, so if $AF = 0$, Fubini's Theorem says that

$$
0 = \int_G (AF)(g) \, d\mu_G(g)
$$

$$
= \int_G \int_H f(gh) \, d\mu_H(h) \, d\mu_G(g)
$$

$$
= \int_H \int_G F(g) \, d\mu_G(g) \, d\mu_H(h)
$$

Now make the variable change $g \mapsto gh$. Since $d\mu_H$ is a left Haar measure, in principle the integral might not be in G, under this change, but since H is compact, by the usual arguments $d\mu_H$ is also a right Haar measure, so the last line becomes

$$
0 = \int_H \int_G F(g) \, d\mu_G(g) \, d\mu_H(h) = \int_G F(g) \, d\mu_G(g)
$$

\checkmark.

Therefore I is well-defined. Now the existence of the measure
on G/H follows from the Riesz representation thm. \square

Exercise For the case of a cpt lie group w/ a closed
lie subgroup, derive this result from differential geometry.

Recall If G is a cpt lie group w/ maximal torus T, then the lie
algebra \mathfrak{g} is an invt subspace, w/ orthogonal complement a
subspace \mathfrak{t} that decomposes as the direct sum of non-trivial
two-dim'l real reps of T.

Let $W = \mathcal{N}(T)/T$ be the Weyl group of G. W acts on T by
conjugation. If $w \in T$ a coset is an element of W, then given
e_T, the element nt^{-1} actually only depends on w, so we
write it wtw^{-1}.

Thm (1) Two elements of T are conjugate in G (2) they are
conjugate in $N(T)$.

(2) The inclusion $T \rightarrow G$ induces a bijection between the orbits
of W on T and the conjugacy classes of G.

Pf Suppose that $g, u \in T$ are conjugate in G, say $g^{-1}ug \in T$. Let H
be the connected component of the identity in the
centralizer of u. Last time we saw that this is a closed
lie subgroup. Now T and $g^{-1}ug^{-1}$ are both connected commutative
groups containing u, and therefore they are both contained in H.
Since they are both maximal tori in G, they are also maximal
tori in H, hence they are conjugate in the compact connected group H. Pick $h \in H$ s.t $hTh^{-1} = gTg^{-1}$, and then $w = hg \in N(T)$.

Since $wT^{-1} = h^{-1}gh = g$, we see that t and u are conjugate in $N(T)$.

For (ii), note that G is the union of the conjugates of t, so (ii) follows from (i).

Prop. The centralizer $C(T)$ of T is exactly T.

Pr. Since $C(T) \subseteq N(T)$, certainly T is of finite index in $C(T)$.

So if $x \in C(T)$, $x \in T$. For some n, let t to be a generator of T.

Since the nth power map $T \to T$ is surjective, $\exists t \in T$ s.t $\exists x \in T$ s.t $\exists t^n = x_0$. Now x_0 is contained in a maximal torus T' which contains $t_0 \to T \in T$. By maximality, $T' = T$ and $x \in T$. \square

Prop. There is a dense open set $\Omega \subseteq T$ s.t the $w \in T$ elements w^{-1}

For $w \in \Omega$ are all distinct for each $w \in \Omega$.

Pr. If $w \in \Omega$, let $\Omega_w = \{ x \in T : w^{-1}xw \in T \}$. This is an open subset of T (since its complement is certainly closed). If $w \in T$ and t is a generator of T, then $t \in \Omega_w$ because otherwise if $w \in N(T)$ represents w, then $w \in C(T) = C(T) = T$, which is a contradiction since we assumed that $w \notin T$. The set $\Omega = \bigcap \Omega_w$ is the dense subset in T since t contains all generators of T and the set of generators is itself dense in T. \square
Thm (way1) Let G be a cpt connected Lie group, T a maximal torus, p a vector space complement to x in gr. If F is a class function and dg and dx are Haar measures on G and T normalized so G and T have volume 1, then

$$\int_G f(x) \, dg = \frac{1}{|w|} \int_T F(x) \det \left(\left[\text{Ad}(e^y) - \text{Id}_g \right] p \right) \, dx$$

Proof. Let $x = G/T$, and give X the measure dx invariant under left translation by G so X has volume 1. Consider the map

$$\Phi : x \times T \to G$$

$$(xT, t) \mapsto xtx^{-1}$$

Choose volume elements on G and T so that the Jacobians of the exponential maps $x \to T$ and $y \to G$ (which each have the identity as their derivative) are 1.

Let us compute the Jacobian J_Φ of Φ. Parametrize a nbhd of xT in X using a chart from a neighborhood of the origin in p, i.e., via the map $V \to x \exp(xT)$ for V in some nbhd of the origin in p. We also use the exponential map to parametrize a neighborhood of $T \times T$, using the map $V \to \exp(x)$ for V in T. So near $(xT, t) \in X \times T$ we have a chart given by $(y, v) \mapsto (x \exp(y) \exp(v)) \in X \times T$.

From some neighborhood of the origin in $p \times T$. In these coordinates, Φ is given by $(y, v) \mapsto x \exp(v) \exp(y) \exp(-v) x^{-1} \in G$.

We translate on the left by x^{-1} and on the right by x, which does not affect the Jacobian since the Haar measure is translation.
is translation inv. This leaves us with the map

\[(x, y) \mapsto \exp(x) \cdot \exp(y) \exp(-x) = \exp(\operatorname{Ad}(e^y) x) \exp(y) \exp(-x)\]

We identify the tangent space of \(pt\) with itself, i.e. \(w/\mathfrak{g} = pt\),
and then the differential of this map at \(0\) is

\[U + V \mapsto \operatorname{Ad}(e^y) U + V - U = (\operatorname{Ad}(e^y) - I_\mathfrak{g}) U + V\]

The Jacobian is the determinant of the differential, so

\[
\begin{align*}
\det \left(\left[\operatorname{Ad}(e^y) - I_{\mathfrak{g}} \right] \big|_{\mathfrak{g}} \right)
\end{align*}
\]

Now by the last proposition, the map \(\varphi: \mathbb{R} \times \mathbb{R} \to G\) is a \(\mathbb{R}\)-fied cover over a dense open set, so for any class function \(F\) on \(G\),
we have

\[
\int_G F(g) dg = \frac{1}{\mathbb{R}} \int_{\mathbb{R} \times \mathbb{R}} F(y(x, \xi)) \varphi((x, \xi)) \, dx \, d\xi
\]

Now \(F(y(x, \xi)) \varphi((x, \xi)) = F(x) \cdot \det \left(\left[\operatorname{Ad}(e^y) - I_\mathfrak{g} \right] \big|_{\mathfrak{g}} \right)\) is independent of \(x\) since \(F\) is a class function. This implies the result.
Example. Let $G = U(n)$ and T be the diagonal torus. Writing

$$t = \begin{pmatrix} e_1 & \vdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e_n \end{pmatrix} \in T$$

w.l.o.g. $t_{ij} = 1$ be the Haar measure, we have

$$\int_{G} F(g) dg = \frac{1}{n!} \int_{T} F \left(\begin{pmatrix} e_1 & \vdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e_n \end{pmatrix} \right) \prod_{i<j} |t_{ij} - t_{ij}^{-1}|^2 dt$$

For F any class function.

Proof. We need to check that $\det \left(\text{Ad}(t^{-1}) - I_p \right) = \prod_{i<j} |t_{ij} - t_{ij}^{-1}|^2$.

To compute this determinant, we may as well consider the induced transformation on $O(p)$. Now $O(n) \cong U(n) \cong \text{Mat}_n(\mathbb{C})$. Moreover, $O(p)$ is spanned by the T-eigenspaces in $\text{Mat}_n(\mathbb{C})$ corresponding to nontrivial characters of T. These are spanned by elementary matrices E_{ij}; the eigenvalue of $\text{Ad}(t)$ on E_{ij} is $t_{ij} - t_{ij}^{-1}$. Ergo

$$\det \left(\text{Ad}(t^{-1}) - I_p \right) = \prod_{i<j} (t_{ij} - t_{ij}^{-1}) = \prod_{i<j} (t_{ij}^{-1} - t_{ij}) (t_{ij} - t_{ij}^{-1})$$

As $1_{ij} = 1_{ij}^{-1} = 1$, we have $(t_{ij}^{-1} - t_{ij}) (t_{ij} - t_{ij}^{-1}) = (t_{ij} - t_{ij}^{-1}) (t_{ij}^{-1} - t_{ij}) = t_{ij} - t_{ij}^{-1}$.